

11628 S. Choctaw Drive Baton Rouge, LA 70815 Phone: 225.924.2002 Fax: 225.924.2004

www.semsinc.net

Project No.: 750-0001

October 23, 2015

Mr. Dean Schellhase William T. Poe & Associates DBA Explosive Service International 9985 Baringer Foreman Road Baton Rouge, Louisiana 70809

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden National Guard Training Site
Minden, Bossier/Webster Parishes, Louisiana

Dear Mr. Schellhase:

Southern Environmental Management & Specialties (SEMS) is hereby submitting the Baseline Environmental Site Investigation Report for the above referenced project. Baseline Environmental Site Investigation activities were conducted at Area I and Clarkes Bayou in accordance with the Revised Quality Assurance Sample Plan (QASP) – Soil and Water dated September 25, 2015.

Should you have any questions or require additional information, please contact the undersigned at (225) 924-2002.

Sincerely,

SEMS, Inc.

SEMS, Inc.

Maghee Shaw Project Manager

Magher Show

Charles "Chuck" L. Ellis, Jr., P.E.

Environmental Manager

11628 S. Choctaw Drive Baton Rouge, LA 70815 Phone: 225.924.2002 Fax: 225.924.2004 www.semsinc.net

BASELINE ENVIRONMENTAL SITE INVESTIGATION REPORT M6 DESTRUCTION PROJECT CAMP MINDEN NATIONAL GUARD TRAINING SITE MINDEN, BOSSIER/WEBSTER PARISHES, LOUISIANA

PREPARED FOR:
WILLIAM T. POE & ASSOCIATES
DBA EXPLOSIVE SERVICE INTERNATIONAL
9985 BARINGER FOREMAN ROAD
BATON ROUGE, LOUISIANA 70809

OCTOBER 2015

1.0		RODUCTION	
2.0	SCO	OPE OF WORK	1
3.0	SU	MMARY OF SITE INVESTIGATION ACTIVITIES	3
3	.1 A	AREA I SURFACE	4
	3.1.1	SAMPLE PREPARATION	4
	3.1.2	DIRECT PUSH BORINGS AND SAMPLING	4
	3.1.3	SURFACE SOIL PLUGGING AND ABANDONMENT	6
	3.1.4	SURFACE SOIL SAMPLE LOCATION SURVEY	7
3	5.2 A	AREA I PERIMETER	7
	3.2.1	DIRECT PUSH BORINGS AND SAMPLING	7
	3.2.2	MONITORING WELL INSTALLATION AND WELL DEVELOPMENT	9
	3.2.3	MONITORING WELL SURVEY	10
	3.2.4	GROUNDWATER CONDITIONS	11
	3.2.5	MONITOR WELL GROUNDWATER SAMPLING	11
3	3.3	CLARKES BAYOU	12
	3.3.1	SURFACE WATER SAMPLING	12
	3.3.2	SEDIMENT SAMPLING	13
	3.3.3	CLARKES BAYOU SAMPLE LOCATION SURVEY	14
4.0	QU	ALITY ASSURANCE/QUALITY CONTROL SAMPLING	14
5.0	IN	VESTIGATIVE DERIVED WASTES	15
6.0	DA	TA EVALUATION	15
(5.1 A	AREA I SURFACE	16
	6.1.1	AREA I SURFACE SOIL CONDITIONS	16
	6.1.2	AREA I SURFACE SOIL ANALYTICAL RESULTS	16
(5.2	AREA I PERIMETER	17
	6.2.1	AREA I PERIMETER SOIL CONDITIONS	17
	6.2.2	AREA I PERIMETER SOIL ANALYTICAL RESULTS	17
	6.2.3	AREA I PERIMETER GROUNDWATER ANALYTICAL RESULTS	18
	53 (TI ARKES BAVOII	19

CAL CLIDEAC	E WATER ANALYTICAL RECHITC
	E WATER ANALYTICAL RESULTS
	NT ANALYTICAL RESULTS
7.0 CONCLUSION	NS
8.0 RECOMMEN	DATIONS
LIST OF TABLES	
TABLE NUMBER	TITLE
1	AREA I SURFACE SOIL DATA SUMMARY
2	SAMPLE LOCATIONS SURVEY DATA
3	AREA I PERIMETER SOIL BORING PID SUMMARY
4	AREA I PERIMETER SOIL DATA SUMMARY
5	GROUNDWATER MONITORING WELL CHARACTERISTICS
6	AREA I GROUNDWATER SAMPLING SUMMARY
7	AREA I GROUNDWATER DATA SUMMARY
8	CLARKES BAYOU SURFACE WATER DATA SUMMARY
9	CLARKES BAYOU SEDIMENT DATA SUMMARY
LIST OF FIGURES	
FIGURE NUMBER	TITLE
1	REGIONAL LOCATION MAP
2	FACILITY MAP
3	SAMPLE LOCATION MAP
4	POTENTIOMETRIC MAP (AUGUST 31, 2015)
5	ARSENIC CONCENTRATIONS IN SURFACE SOIL (AUGUST 2015)

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page iii of iii

LIST OF ATTACHMENTS

ATTACHMENT LETTE	R TITLE
A	AREA I SURFACE SOIL BORING LOGS
В	LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-
	CUSTODY DOCUMENATION
C	AREA I PERIMETER SOIL BORING LOGS AND MONITOR WELL
	CONSTRUCTION DIAGRAMS
D	MONITORING WELL DEVELOPMENT LOGS
E	MONITORING WELL REGISTRATION FORMS
F	MONITORING WELL SAMPLING LOGS

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 1 of 22

1.0 INTRODUCTION

Southern Environmental Management & Specialties (SEMS) was contracted by Explosive Service International (ESI) to conduct a Baseline Environmental Site Investigation prior to commencement of the M6 Destruction Project at the Camp Minden National Guard Training Site (Camp Minden) in Webster and Bossier Parishes, Louisiana. The M6 Destruction Project includes the complete removal, destruction, and disposal of all hazardous materials and waste located at Camp Minden under the EPA administration order. Destruction activities will be conducted at Camp Minden Area I (herein identified as Area I). **Figure 1** is a Regional Location Map showing the location of Camp Minden within the State of Louisiana. **Figure 2** is a Facility Map showing the Camp Minden Area I Destruction Site and the significant features.

The Baseline Environmental Site Investigation was conducted to establish existing soil and groundwater conditions in Area I and establish existing sediment and surface water conditions in Clarkes Bayou prior to commencement of the M6 Destruction Project. As shown on **Figure 2**, former operations conducted at Area I included explosives waste incineration and additional incineration.

2.0 SCOPE OF WORK

The scope of work for the Baseline Environmental Site Investigation included conducting site investigation activities in Area I and Clarkes Bayou at Camp Minden. Due to the large size of Area I, Area I was divided into two areas for site investigation activities. The two areas are identified as Area I surface (area of operation) and Area I perimeter (around the perimeter of the area of operation). **Figure 3** is a Sample Location Map showing the locations of the samples collected in Area I surface, Area I perimeter and Clarkes Bayou.

The site investigation scope of work for Area I surface included the advancement of soil borings using direct push technology (DPT) for the collection of surface soil samples. The site investigation scope of work for Area I perimeter included the advancement of DPT soil borings completed as

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 2 of 22

monitor wells for the collection of soil and groundwater samples prior to, during and after the completion of the M6 destruction project. The site investigation scope of work for Clarks Bayou included the collection of surface water and sediment samples from Clarkes Bayou at the point of discharge from Area I, upstream of Area I and downstream of Area I. The following is a summary of the specific scope of work details for Area I surface, Area I perimeter, and Clarks Bayou:

AREA I SURFACE SCOPE OF WORK

- Advancement of thirty-five (35) shallow direct push borings to a total depth of 2 feet below ground surface (bgs) for the collection of soil samples. The sample locations are identified as the grid locations denoted on **Figure 3**;
- Laboratory analysis of all 35 surface soil samples for nitroaromatics, nitramines, and nitrate esters by high performance liquid chromatography (nitroaromatics and nitramines) using EPA Method 8330B; volatile organic compounds (VOCs) using EPA Method 8260C; and semi-volatile organic compounds (SVOCs) using EPA Method 8270D, including 2,4-dinitrotoluene, 2,6-dinitrotoluene, di-n-butylpthalate, and diphenylamine;
- Laboratory analysis of four (4) select surface soil samples for nitrocellulose using Method 353.2; RCRA Metals (Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium, and Silver) using EPA Methods 6020A and 7471B; and Dioxins/Furans using EPA Method 1613B; and
- Laboratory analysis of one select surface soil sample for total petroleum hydrocarbon gasoline range organics (TPH-GRO) using EPA Method 8015B and total petroleum hydrocarbon - diesel range organics (TPH-DRO) using EPA Method 8015B.

AREA I PERIMETER SCOPE OF WORK

- Installation of six (6) direct push soil borings (identified as SB-1 through SB-6) to a depth of 30 feet bgs completed as monitoring wells (identified as MW-1 through MW-6) for the collection of soil and groundwater samples;
- Field screening of soil samples with a photoionization detector (PID); and

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015

Page 3 of 22

Laboratory analysis of select soil samples (three per boring) and groundwater samples (one
per monitoring well) for nitroaromatics and nitramines using EPA Method 8330B; VOCs
using EPA Method 8260C; and SVOCs using EPA Method 8270D, including 2,4dinitrotoluene, 2,6-dinitrotoluene, di-n-butylpthalate, and diphenylamine.

CLARKES BAYOU SCOPE OF WORK

- Collection of three (3) surface water samples identified as SW upstream, SW point of discharge, and SW downstream;
- Collection of three (3) sediment samples identified as sediment upstream, sediment point of discharge, and sediment downstream; and
- Laboratory analysis of surface water and sediment samples for VOCs using EPA Method 8260C and SVOCs using EPA Method 8270D, including 2,4-dinitrotoluene, 2,6-dinitrotoluene, di-n-butylpthalate, and diphenylamine.

The following report presents a summary of the Baseline Environmental Site Investigation activities, conclusions, and recommendations. The Baseline Site Investigation activities were conducted in accordance with the Revised Quality Assurance Sample Plan (QASP) – Soil and Water dated September 25, 2015. Sample locations were determined as outlined in the approved QASP dated July 14, 2015.

3.0 SUMMARY OF SITE INVESTIGATION ACTIVITIES

The Baseline Environmental Site Investigation included conducting site investigation activities in Area I surface, Area I perimeter and Clarkes Bayou. The Area I surface site investigation activities included the advancement of thirty five (35) shallow direct push soil borings (identified as the grid locations on **Figure 3**) to a total depth of 2 feet bgs for the collection of surface soil samples. The Area I perimeter site investigation activities included the installation of six (6) direct push soil borings to a total depth of 30 feet bgs completed as monitoring wells around the perimeter of Area I for the collection of soil and groundwater samples (see **Figure 3**). The Clarkes Bayou site

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 4 of 22

investigation activities included the collection of surface water and sediment samples from Clarkes Bayou.

The Area I surface soil and Area I perimeter soil sampling/monitor well installation/development activities were conducted on August 17-21, 2015. The Clarkes Bayou sampling activities and the collection of the groundwater samples from the Area I perimeter monitor wells were conducted on August 31, 2015. Details of the site investigation activities are included in the following sections.

3.1 AREA I SURFACE

3.1.1 Sample Preparation

Area I surface soil sample locations were measured and demarked in preparation for drilling activities on August 17, 2015 as shown on **Figure 3**. The locations were identified using the corresponding grid locations as identified on the Sample Location Map (**Figure 3**).

3.1.2 Direct Push Borings and Sampling

Thirty-five (35) shallow direct push borings were advanced at Area I on August 17-18, 2015 for the collection of surface soil samples. The direct push boring locations were pre-determined as specified in the approved QASP dated July 14, 2015. The boring were installed at the following locations:

- Twenty-one (21) direct push borings were advanced in a 130 ft x 130 ft grid pattern within the existing fenced area to objectively assess representative site conditions;
- Seven (7) additional direct push borings were advanced within the existing fenced area to
 further investigate the former explosives waste incinerator (EWI) location; the proposed
 contained burn chamber system location; the proposed trailer staging area; and the proposed
 material staging area;

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 5 of 22

- Five (5) direct push borings were advanced in the northwestern portion of Area I to investigate the former incinerator location and the proposed type II magazine storage location; and
- Two (2) direct push borings were advanced southeast of the existing gate to investigate the locations of the proposed above ground storage tanks.

Each of the direct push borings was advanced by Devonian Group (Devonian), of Lafayette, Louisiana utilizing a track mounted Geoprobe Rig 6620DT. Each direct push boring was advanced to a depth of 2 feet bgs. Groundwater was not encountered in the direct push borings. Soil cores were collected in stainless steel sample barrels lined with disposable acetate liners and relinquished to the field sampler. Immediately upon collection, a grab sample of the upper 2 feet of soil of each boring location was collected for laboratory testing using Terra Core sampling kits in accordance with method 5035. Soil boring logs were developed from observations and descriptions for samples retrieved from each direct push boring. Area I surface soil boring logs are provided as **Attachment A**.

The surface soil samples were placed into new, laboratory supplied, pre-preserved containers (if applicable), labeled, and placed in a cooler on ice for transportation to the laboratory. Each sample was labeled with the sample identification, date and time of collection, project name, sampler name, and requested analysis. Surface soil samples were packed with ice and shipped, accompanied by chain-of-custody documentation to TestAmerica St. Louis (TestAmerica) in Earth City, Missouri for laboratory analysis.

All of the surface soil samples were analyzed for nitroaromatics and nitramines using EPA Method 8330B; volatile organic compounds (VOCs) using EPA Method 8260C; and semi-volatile organic compounds (SVOCs) using EPA Method 8270D, including 2,4-dinitrotoluene, 2,6-dinitrotoluene, din-butylpthalate, and diphenylamine.

Baseline Environmental Site Investigation Report M6 Destruction Project

Camp Minden

Minden, Louisiana

October 2015 Page 6 of 22

Additionally, four (4) select Area I surface soil samples were also analyzed for nitrocellulose using

EPA Method 353.2; RCRA Metals using EPA Method 6020A and EPA Method 7471B; and

Dioxins/Furans using EPA Method 1613B. These four (4) surface soil samples were selected from

Area I based on existing structures, former site operations, and proposed activities for additional

analysis. The selected soil samples analyzed for additional parameters included: the proposed

contained burn chamber system location (grid location B2.3); the former EWI location (grid location

H2); the former incinerator location (grid location O-0.2); and an area of non-impact, southeast of

the entrance gate (grid location E6.5).

One surface soil sample southeast of the entrance gate (grid location E6.5) was also analyzed for

total petroleum hydrocarbons - gasoline range organics (TPH-GRO) using EPA Method 8015B and

total petroleum hydrocarbons - diesel range organics (TPH-DRO) using EPA Method 8015B since it

is located in the vicinity of the proposed petroleum above ground storage tanks (see Figures 2 and

3).

The results of the laboratory analyses are shown in the laboratory analytical report included in

Attachment B. A summary of the Area I surface soil analytical results is presented in **Table 1**.

All direct push equipment and sampling devices were chemically cleaned prior to drilling activities

and between each borehole to minimize the potential of cross contamination. In addition, nitrile

gloves were used while handling sampling equipment and soil samples.

3.1.3 Surface Soil Plugging and Abandonment

Following sample collection, each direct push boring location was plugged and abandoned by

grouting the borehole with a cement/bentonite mixture from the bottom of the borehole to ground

surface.

s:\explosive service international - 750\camp minden 750-0001\baseline sampling event\report.doc

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 7 of 22

3.1.4 Surface Soil Sample Location Survey

Upon completion of the plugging and abandonment activities, each shallow direct push surface soil boring location was plotted utilizing a portable Garmin GPSMAP 62S hand held unit to determine the latitude and longitude coordinates to the nearest one-hundredth of a second (0.01 second) for future field identification. The latitude and longitude coordinates for the Area I surface soil sample locations are summarized in **Table 2**.

3.2 AREA I PERIMETER

3.2.1 Direct Push Borings and Sampling

Six (6) direct push borings identified as SB-1 through SB-6 were advanced around the perimeter of Area I on August 17-18, 2015 for the collection of soil samples (see **Figure 3**). The direct push boring locations were pre-determined as specified in the approved QASP dated July 14, 2015. As shown on **Figure 3**, one direct push boring was advanced to the north of Area I, one direct push boring was advanced to the south of Area I, two direct push borings were advanced to the east of Area I, and two direct push borings were advanced to the west of Area I.

Each of the direct push borings was advanced by Devonian utilizing a track mounted Geoprobe Rig 7822DT. Each direct push boring (SB-1 through SB-6) was advanced to a total depth of 30 feet bgs. Groundwater was first encountered in the direct push borings at depths ranging from approximately 17 to 21 feet bgs. Soil samples were collected with the use of 4-foot or 5-foot (as determined by the final push) long stainless steel sample barrels lined with disposable acetate liners and were relinquished to the field sampler. All direct push equipment and sampling devices were chemically cleaned prior to drilling activities and between each borehole to minimize the potential of cross contamination. In addition, nitrile gloves were used while handling equipment and soil samples. Soil boring logs were developed from observations, descriptions and field screening data for samples

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 8 of 22

retrieved from each direct push boring. Area I perimeter soil boring logs are provided as **Attachment C**.

Continuous soil sampling was conducted in two feet intervals. Immediately upon collection, a portion of each soil sample interval was collected using Terra Core sampling kits in accordance with EPA Method 5035 sampling procedures and retained for laboratory analysis. The soil samples were placed in new, laboratory-supplied, pre-preserved containers (if applicable), labeled, and placed on ice in a cooler. Each sample was labeled with the sample identification, date and time of collection, project name, sampler name, and requested analysis. A portion of each soil sample was also placed in a separate glass jar, foil sealed, and allowed to stand for volatilization of possible hydrocarbon vapors. The head space of the sample was then analyzed in the field for hydrocarbon vapors using a photo ionization detector (PID) calibrated to 100 parts per million Isobutylene. The field screening PID hydrocarbon vapor concentrations of each soil sample measured were recorded on the soil boring logs. A summary of the Area I perimeter field screening readings are provided on **Table 3**.

Immediately upon field screening, a minimum of three soil samples per soil boring were selected from each perimeter borehole for laboratory analysis. The soil samples selected for laboratory analyses were selected based on the Louisiana Department of Environmental Quality (LDEQ) Risk Evaluation/Corrective Action Program (RECAP) (dated October 2003) Appendix B criteria which are based upon the following considerations: highest PID reading in surface soil (0–15 feet bgs); highest PID reading in subsurface soil: (> 15 feet bgs); first encountered groundwater; and total depth of borehole. The soil samples selected for analytical analyses included the following: SB-1 (0-2), SB-1 (20-22), SB-1 (28-30), SB-2 (0-2), SB-2 (16-18), SB-2 (28-30), SB-3 (0-2), SB-3 (16-18), SB-3 (28-30), SB-4 (0-2), SB-4 (16-18), SB-4 (28-30), SB-5 (0-2), SB-5 (16-18), SB-5 (28-30), SB-6 (0-2), SB-6 (20-22), and SB-6 (28-30). The selected soil samples were packed with ice and shipped, accompanied by chain-of-custody documentation to TestAmerica for laboratory analysis. Each of the perimeter soil samples were analyzed for nitroaromatics and nitramines using EPA Method 8330B; VOCs using EPA Method 8260C; and SVOCs using EPA Method 8270D, including 2,4-dinitrotoluene, 2,6-dinitrotoluene, di-n-butylpthalate, and diphenylamine. The results of these

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 9 of 22

analyses are shown in the laboratory analytical report included in **Attachment B**. A summary of the Area I perimeter soil analytical results are presented in **Table 4**.

3.2.2 Monitoring Well Installation and Well Development

Once the total depth (30 feet bgs) of the perimeter soil borings SB-1, SB-2, SB-3, SB-4, SB-5, and SB-6 were reached, the borings were converted into permanent monitoring wells MW-2, MW-4, MW-6, MW-5, MW-3, and MW-1, respectively. The monitoring wells were installed in the shallow groundwater unit to evaluate groundwater conditions at the site throughout the duration of the M6 Destruction Project at Camp Minden – Area I. The locations of the monitoring wells as outlined in the approved QASP dated July 14, 2015 are shown on **Figure 3**.

Devonian utilized a track mounted Geoprobe 7822DT drill rig equipped with 8.25-inch diameter hollow stem augers to install six (6) 2-inch diameter schedule 40 PVC monitoring wells. Monitoring wells MW-1 through MW-3were installed to a total depth of 30 ft-bgs; MW-4 was installed to a total depth of 29 ft-bgs; MW-5 was installed to a total depth of 27 ft-bgs; and MW-6 was installed to a total depth of 28 ft-bgs. Each monitoring well was constructed of schedule 40 PVC pipe with the bottom 10-feet of the PVC pipe factory slotted (0.010-inch width slots) well screen with a sump. The assembled well pipe was placed through the hollow stem augers. As the augers were withdrawn, the annular space around the well assembly was filled with a sand pack material of uniform gradation (20/40 silca sand filter) to a depth of two-feet above the top of the well screen. A two-foot thick bentonite seal was placed above the sand pack material utilizing water-activated pellets. Portland cement-bentonite grout mix was used to backfill the annular space above the bentonite seal. Each monitor well was secured with a locking watertight cap completed with an above ground surface lockable metal shroud, a 2-ft by 2-ft concrete pad, and four protective metal guard posts. Well construction diagrams are provided in **Attachment C**. The groundwater monitoring well characteristics are included in **Table 5**.

Following installation, each well was developed in an attempt to remove fine-grained particles. The monitoring wells were developed on August 19-20, 2015 using a downhole pump with dedicated tubing in order to prevent cross contamination. A surge block was used in conjunction with the downhole pump to mechanically surge each well during development and to ensure proper conductivity between the borehole and the formation. The Monitoring Well Development Logs are provided in **Attachment D**.

Monitoring wells MW-1 through MW-6 were registered with the Louisiana Department of Natural Resources (LDNR), Office of Conservation using the Water Well Registration Short Form (DOTD-GW-1S). Copies of the LDNR Registration Forms are included in **Attachment E**.

3.2.3 Monitoring Well Survey

The top of casing (TOC), ground surface elevation, and location of monitoring wells MW-1 through MW-6 were surveyed on August 20, 2015, by SEMS, Inc. Monitoring wells MW-1 through MW-6 were surveyed for the vertical position to the nearest one-hundredth of a foot (0.01 foot) in reference to the National Geodetic Vertical Datum (NGVD) of 1929. The horizontal locations of monitoring wells MW-1 through MW-6 were surveyed to obtain latitude and longitude to the nearest one-hundredth of a second (0.01 second) in reference to the North American Datum of 1983 (NAD 83). The latitude and longitude coordinates, TOC elevations, and ground surface elevations for each monitor well are summarized on **Table 2.** The TOC and ground surface elevations for each monitor well (MW-1 through MW-6) are as follows:

Monitoring Well ID	Top of Casing Elevation	Ground Surface Elevation
	(ft. NGVD)	(ft. NGVD)
MW-1	205.16	202.08
MW-2	206.07	203.18
MW-3	204.14	201.72
MW-4	203.66	199.75
MW-5	204.08	200.78
MW-6	202.69	200.51

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 11 of 22

3.2.4 Groundwater Conditions

On August 31, 2015, SEMS personnel measured the groundwater levels in monitoring wells MW-1 through MW-6 for the determination of the groundwater potentiometric surface. Each well was uncapped to allow water levels to equilibrate to atmospheric conditions. After equilibration, the depth-to-water was measured from the TOC to the nearest one-hundredth of a foot with an oil/water interface probe. The interface probe was decontaminated prior to on-site work, between each well, and after fluid level measurements were complete.

The static groundwater levels were recorded at depths ranging from between 21.22 feet and 23.85 feet below the top of casing in monitoring wells MW-1 through MW-6 during the August 31, 2015 groundwater monitoring event. The static groundwater measurements were used to determine groundwater elevations at the site and groundwater flow direction. A Potentiometric Map for the August 31, 2015 monitoring event is provided as **Figure 4**, which shows that groundwater flows generally toward the south-southwest with an average hydraulic gradient across the site of approximately 0.001 ft/ft. The groundwater level measurements from the August 31, 2015 monitoring event were recorded on the Monitoring Well Sampling Logs included as **Attachment F** and are summarized in **Table 6**.

3.2.5 Monitor Well Groundwater Sampling

Groundwater samples were collected from monitor wells MW-1 through MW-6 on August 31, 2015. Prior to sampling, at least three well volumes were purged from each monitor well MW-1 through MW-6 using dedicated disposable bailers. The wells were allowed to recharge and groundwater samples were collected using disposable bailers. The groundwater samples were placed in new, laboratory-supplied, pre-preserved containers (if applicable), labeled with an identification number, and placed on ice in a cooler pending shipment to the laboratory. Samples were packed with ice and shipped, accompanied by chain-of-custody documentation to TestAmerica for analytical testing.

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 12 of 22

Data for the groundwater sampling event is summarized on the Monitoring Well Sampling Logs provided as **Attachment F**.

Groundwater samples collected from monitoring wells MW-1 through MW-6 were analyzed for nitroaromatics and nitramines using EPA Method 8330B; VOCs using EPA Method 8260C; and SVOCs using EPA Method 8270D, including 2,4-dinitrotoluene, 2,6-dinitrotoluene, di-n-butylpthalate, and diphenylamine. The results of the groundwater analyses are shown in the laboratory analytical report included in **Attachment B**. A summary of Area I groundwater analytical results are presented in **Table 7**.

3.3 CLARKES BAYOU

3.3.1 Surface Water Sampling

On August 31, 2015, three surface water samples (identified as SW downstream, SW point of discharge, and SW upstream) were collected from Clarkes Bayou which is the nearest surface water body, located approximately 2,250 feet west of the Camp Minden Area I M6 Destruction site. The three designated sample locations were accessed using a utility terrain vehicle (UTV) as outlined in the approved QASP dated July 14, 2015. Discrete surface water samples were collected using a dip sampler. Sample equipment was decontaminated before collection activities were initiated and between each collection point to prevent cross contamination. In addition, nitrile gloves were used while handling surface water samples and sampling equipment. Surface water and sediment samples were collected from the same collection point; therefore, the surface water samples were collected prior to the collection of the sediment. Water samples were collected without disturbing the sediment. The water samples were placed in new, laboratory-supplied, pre-preserved containers (if applicable), labeled with an identification number, and placed on ice in a cooler pending shipment to the analytical laboratory. Surface water samples were packed with ice and shipped, accompanied by chain-of-custody documentation to TestAmerica for analytical testing.

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 13 of 22

Surface water samples collected from Clarkes Bayou were analyzed for VOCs using EPA Method 8260C and SVOCs using EPA Method 8270D, including 2,4-dinitrotoluene, 2,6-dinitrotoluene, di-n-butylpthalate, and diphenylamine. The results of the surface water analyses are shown in the laboratory analytical report included in **Attachment B**. A summary of Clarkes Bayou surface water analytical results are presented in **Table 8**.

3.3.2 Sediment Sampling

On August 31, 2015, three discrete sediment samples (identified as sediment downstream, sediment point of discharge, and sediment upstream) were collected from Clarkes Bayou after collection of the surface water samples. Sediment samples were collected using a clamshell sampling device. The device was lowered into the sediment at the desired location to retrieve a sample. Excess water was removed from the sampling device through drainage ports, and the sample was collected from the reservoir. Sample equipment was decontaminated before collection activities were initiated and between each collection point to prevent cross contamination. In addition, nitrile gloves were used while handling sediment samples and sampling equipment. Sediment samples were placed in new, laboratory-supplied, pre-preserved containers (if applicable), labeled with an identification number, and placed on ice in a cooler pending shipment to the analytical laboratory. Sediment samples were packed with ice and shipped, accompanied by chain-of-custody documentation to TestAmerica for analytical testing.

Sediment samples collected from Clarkes Bayou were analyzed for VOCs using EPA Method 8260C and SVOCs using EPA Method 8270D, including 2,4-dinitrotoluene, 2,6-dinitrotoluene, di-n-butylpthalate, and diphenylamine. The results of the sediment analyses are shown in the laboratory analytical report included in **Attachment B**. A summary of Clarkes Bayou sediment analytical results are presented in **Table 9**.

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 14 of 22

3.3.3 Clarkes Bayou Sample Location Survey

Upon completion of the surface water and sediment sampling, each Clarkes Bayou collection point was plotted utilizing a portable Garmin GPSMAP 62S hand held unit to determine the latitude and longitude coordinates to the nearest one-hundredth of a second (0.01 second) for future field identification. The latitude and longitude coordinates for the Clarkes Bayou sample locations are summarized in **Table 2**.

4.0 QUALITY ASSURANCE/QUALITY CONTROL SAMPLING

Quality Assurance/Quality Control (QA/QC) samples were collected and analyzed in conjunction with the soil and water samples collected during the Baseline Environmental Site Investigation. Soil and water duplicates, matrix spike and matrix spike duplicates (MS/MSD), equipment rinsates, field blanks, and trip blank QA/QC samples were collected in accordance with the Revised QASP – Soil and Water. QA/QC samples collected in accordance with the Revised QASP – Soil and Water included:

- Duplicate samples were collected at a frequency of one per ten field samples per matrix;
- MS/MSD samples were collected at a frequency of one per ten field samples per matrix;
- Rinsate samples were collected at a frequency of one per day during field sampling activities;
- Field blanks were collected at a frequency of one per day during field sampling activities; and
- Trip blanks were analyzed at a frequency of one per cooler containing samples for volatiles analysis.

Field and laboratory QA/QC results are shown in the laboratory analytical reports included in **Attachment B**. Duplicate sample analytical results are included on **Tables 1, 4, 7, and 9**.

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 15 of 22

5.0 INVESTIGATIVE DERIVED WASTES

Investigative derived wastes (IDW) generated during the Baseline Sampling Event was segregated and containerized in 55-gallon and 85-gallon steel drums; properly labeled; and stored in a designated holding area at the Camp Minden Area I M6 Destruction Site for management by ESI. IDW included soil cuttings generated during advancement of the boreholes; soil cuttings generated during drilling of the monitoring wells; groundwater collected from the monitoring wells during well development and sampling activities; equipment decontamination water; and potentially non-hazardous disposable materials (nitrile gloves, paper towels, trash bags, etc). A total of 12 drums containing soil IDW; 7 drums containing purge/waste water; and 4 drums containing potentially non-hazardous disposable debris/waste were generated. Once IDW is disposed, documentation of IDW disposal should be archived with the project records.

6.0 DATA EVALUATION

Included in this section are discussions of the soil conditions and analytical results from the Area I surface soil samples; soil conditions and soil and groundwater analytical results from the Area I perimeter soil borings/monitor wells; Clarkes Bayou surface water analytical results; and Clarkes Bayou sediment analytical results. Soil and water analytical results from the Baseline Environmental Site Investigation were compared to the applicable Screening Level as determined by the Louisiana Department of Environmental Quality (LDEQ) Risk Evaluation/Corrective Action Program (RECAP), Screening Standards (dated October 2003), and the USEPA Regional Screening Level (RSL) Summary Table (revised June 2015).

Laboratory analytical results were reported down to the method detection limit (MDL). However, MDLs are greater than the established Screening Levels for some of the constituents analyzed. Acetone was detected in samples at a level below the reporting limit and may be attributed to laboratory contamination. Laboratory explanations are provided in the narrative sections of the TestAmerica analytical laboratory reports (160-13469-1, 160-13469-2, 160-13510-1, and 160-13617-1) provided in **Attachment B**.

6.1 AREA I SURFACE

6.1.1 AREA I SURFACE SOIL CONDITIONS

Based upon the boring logs for surface soil direct push borings, general soil conditions observed consisted of a Silty Clay from the ground surface to the total borehole depth of 2 feet bgs. Oxidized and iron lenses were observed throughout the site in the Silty Clay soils as seen by reddish orange soil particles and black nodules.

6.1.2 AREA I SURFACE SOIL ANALYTICAL RESULTS

The Area I surface soil sample analytical results for the Baseline Environmental Site Investigation are shown on **Table 1** for Nitroaromatics and Nitramines, VOCs, SVOCs, RCRA Metals, Dioxins and Furans, Nitrocellulose, TPH-DRO, and TPH-GRO. The Screening Levels established for Area I surface soils are also shown on **Table 1** and were established based upon the following:

- The most conservative LDEQ, RECAP Screening Standard of the soil for industrial use (SSi) and the soil concentration protective of groundwater (SSGW) was determined as the Screening Level for VOCs, SVOCs, RCRA Metals, TPH-DRO, and TPH-GRO.
- The EPA, RSL for industrial soil was determined as the Screening Level for Nitroaromatics and Nitramines; Di-n-butyl phthalate and Diphenylamine (SVOCs); and Nitrocellulose.
- The EPA, RSL for industrial soil was determined as the Screening Level for 2,3,7,8-Tetrachlorodibenzo-*p*-dioxin (TCDD). The 2005 World Hospital Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors (TEFs) for Dioxins and Dioxin like compounds were used to calculate the total TCDD Toxic Equivalent (TEQ) in each medium. Total TEQs in each medium were compared to the Screening Level for TCDD.

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 17 of 22

As shown on **Table 1**, Arsenic was the only constituent reported above the Screening Level (12 mg/kg) established for the Area I surface soils. Arsenic was detected in one surface soil sample (grid location O-0.2) at 17 mg/kg. Soil sample O-0.2 was reanalyzed to confirm the laboratory results and the result was 3.2 mg/kg which is below the Screening Level of 12 mg/kg. The laboratory noted the sample was non-homogenous which could cause the difference in the results. Arsenic concentrations are provided on **Figure 5**. No other RCRA Metals exceeded the applicable Screening Level in the Area I surface soil samples. As shown on **Table 1**, Nitroaromatics and Nitramines, VOCs, Nitrocellulose, Dioxins and Furans, TPH-DRO, and TPH-GRO concentrations were not detected in Area I surface soil samples above the established Screening Levels. However, the laboratory MDL for Aniline was greater than the established Screening Level for the Area I surface soils. No other SVOC constituents exceeded the established Screening Levels for the Area I surface soils.

6.2 AREA I PERIMETER

6.2.1 AREA I PERIMETER SOIL CONDITIONS

Based upon the boring logs for the perimeter soil direct push borings (identified as SB-1 through SB-6), general soil conditions observed consisted of a Silty Clay from the ground surface to a depth of 10 feet bgs; followed by a Sandy Silt to the total depth of the boreholes (30 feet bgs). Oxidized and iron lenses were observed throughout the site to the total depth of the borings (30 feet bgs) as seen by reddish orange soil particles and black nodules.

6.2.2 AREA I PERIMETER SOIL ANALYTICAL RESULTS

The Area I perimeter soil sample analytical results for the Baseline Environmental Site Investigation are shown on **Table 4** for Nitroaromatics and Nitramines, VOCs, and SVOCs. The Screening Levels established for Area I perimeter soils are also shown on **Table 4** and were established based upon the following:

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 18 of 22

- The most conservative LDEQ, RECAP Screening Standard of the soil for industrial use (SSi)
 and the soil concentration protective of groundwater (SSGW) was determined as the
 Screening Level for VOCs and SVOCs.
- The EPA, RSL for industrial soil was determined as the Screening Level for Nitroaromatics and Nitramines; and Di-n-butyl phthalate and Diphenylamine (SVOCs).

As shown on **Table 4**, Nitroaromatics and Nitramines and VOCs were not detected in the Area I perimeter soil samples submitted for laboratory analysis above the established Screening Levels. However, the laboratory MDL for Aniline was greater than the established Screening Level for the Area I perimeter soils. No other SVOC constituents exceeded the established Screening Levels for the Area I perimeter soils.

6.2.3 AREA I PERIMETER GROUNDWATER ANALYTICAL RESULTS

The Area I perimeter groundwater analytical results for the Baseline Environmental Site Investigation are shown on **Table 7** for Nitroaromatics and Nitramines, VOCs, and SVOCs. The Screening Levels established for Area I perimeter groundwater are also shown on **Table 7** and were established based upon the following:

- The Groundwater LDEQ, RECAP Screening Standard (GWSS) was determined as the Screening Level for VOCs and SVOCs.
- The EPA, RSL for tap water was determined as the Screening Level for Nitroaromatics and Nitramines; and Di-n-butyl phthalate and Diphenylamine (SVOCs).

As shown on **Table 7**, laboratory MDL's for 2-6 Dinitrotoluene, Nitroglycerin, 1,2-Dibromo-3-chloropropane, Benzo(a)pyrene, Hexachlorobutadiene, 2-Methylnaphthalene, and Pentachlorophenol were greater than the established Screening Levels for the Area I perimeter groundwater samples. No other Nitroaromatics and Nitramines, VOCs, and SVOCs constituents exceeded the established Screening Levels in the Area I perimeter groundwater samples.

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 19 of 22

6.3 CLARKES BAYOU

6.3.1 SURFACE WATER ANALYTICAL RESULTS

The Clarkes Bayou surface water analytical results for the Baseline Environmental Site Investigation are shown on **Table 8** for VOCs and SVOCs. The Screening Levels established for Clarkes Bayou surface water are also shown on **Table 8** and were established based upon the following:

- The Groundwater LDEQ, RECAP Screening Standard (GWSS) was determined as the Screening Level for VOCs and SVOCs.
- The EPA, RSL for tap water was determined as the Screening Level for Di-n-butyl phthalate and Diphenylamine (SVOCs).

As shown on **Table 8**, laboratory MDL's for VOCs and SVOCs were greater than the established Screening Levels for 1,2-Dibromo-3-chloropropane, Benzo(a)pyrene, Hexachlorobutadiene, 2-Methylnaphthalene, and Pentachlorophenol for the Clarkes Bayou surface water. No other VOCs or SVOCs constituents exceeded the established Screening Levels in the Clarkes Bayou surface water samples.

6.3.2 SEDIMENT ANALYTICAL RESULTS

The Clarkes Bayou sediment analytical results for the Baseline Environmental Site Investigation are shown on **Table 9** for VOCs and SVOCs. The Screening Levels established for Clarkes Bayou sediment are also shown on **Table 9** and were established based upon the following:

• The most conservative LDEQ, RECAP Screening Standard of the soil for non-industrial use (SSni), soil for industrial use (SSi) and the soil concentration protective of groundwater (SSGW) was determined as the Screening Level for VOCs and SVOCs.

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana

October 2015

Page 20 of 22

• The EPA, RSL for non-industrial soil was determined as the Screening Level for Di-n-butyl

phthalate and Diphenylamine (SVOCs).

As shown on Table 9, VOCs were not detected in the Clarkes Bayou sediment samples submitted for

laboratory analysis above the established Screening Levels. However, the laboratory MDL for

Aniline was greater than the established Screening Level for the Clarkes Bayou sediment. No other

SVOC constituents exceeded the established Screening Levels for the Clarkes Bayou sediment

samples.

7.0 CONCLUSIONS

The Baseline Environmental Site Investigation was conducted to establish existing soil and

groundwater conditions in Area I and establish the sediment and surface water conditions in Clarkes

Bayou prior to commencement of the M6 Destruction Project. Due to the large size of Area I, the

site was divided into two areas for site investigation activities. The two areas are identified as Area I

surface and Area I perimeter. The conclusions developed upon completion of the Baseline

Environmental Site Investigation activities include the following:

• The general soil conditions observed in Area I consists of a Silty Clay from the ground

surface to a depth of 10 feet bgs; followed by a Sandy Silt to the total depth of the boreholes

(30 feet bgs). Oxidized and iron lenses were observed throughout the site to the total depth

of the borings (30 feet bgs) as seen by reddish orange soil particles and black nodules;

The depth to groundwater measured in monitoring wells MW-1 through MW-6 on August

31, 2015 ranged from 21.22 feet to 23.85 feet below the top of casing. Groundwater flow for

the August 31, 2015 measurement event was generally toward the south-southwest with an

average hydraulic gradient across the site of approximately 0.001 ft/ft;

s:\explosive service international - 750\camp minden 750-0001\baseline sampling event\report.doc

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 21 of 22

Area I Surface

- Arsenic was the only constituent reported above the Screening Level (12 mg/kg) established for the Area I surface soils. Arsenic was detected in one surface soil sample (grid location O-0.2) at 17 mg/kg. Soil sample O-0.2 was reanalyzed to confirm the laboratory results and the result was 3.2 mg/kg which is below the Screening Level of 12 mg/kg. The laboratory noted the sample was non-homogenous which could cause the difference in the results. No other RCRA Metals exceeded the applicable Screening Level in the Area I surface soil samples;
- Nitroaromatics and Nitramines, VOCs, Nitrocellulose, Dioxins and Furans, TPH-DRO, and TPH-GRO concentrations were not detected in Area I surface soil samples above the established Screening Levels. The laboratory MDL for Aniline was greater than the established Screening Level for the Area I surface soils. No other SVOC constituents exceeded the established Screening Levels for the Area I surface soils;

Area I Perimeter

- Nitroaromatics and Nitramines and VOCs were not detected in the Area I perimeter soil samples submitted for laboratory analysis above the established Screening Levels. The laboratory MDL for Aniline was greater than the established Screening Level for the Area I perimeter soils. No other SVOC constituents exceeded the established Screening Levels for the Area I perimeter soils;
- Laboratory MDL's for 2-6 Dinitrotoluene, Nitroglycerin, 1,2-Dibromo-3-chloropropane, Benzo(a)pyrene, Hexachlorobutadiene, 2-Methylnaphthalene, and Pentachlorophenol were greater than the established Screening Levels for the Area I perimeter groundwater samples.
 No other Nitroaromatics and Nitramines, VOCs, and SVOCs constituents exceeded the established Screening Levels in the Area I perimeter groundwater samples;

Baseline Environmental Site Investigation Report
M6 Destruction Project
Camp Minden
Minden, Louisiana
October 2015
Page 22 of 22

Clarkes Bayou

- Laboratory MDL's for VOCs and SVOCs were greater than the established Screening Levels
 for 1,2-Dibromo-3-chloropropane, Benzo(a)pyrene, Hexachlorobutadiene, 2Methylnaphthalene, and Pentachlorophenol for the Clarkes Bayou surface water. No other
 VOCs or SVOCs constituents exceeded the established Screening Levels in the Clarkes
 Bayou surface water samples; and
- VOCs were not detected in the Clarkes Bayou sediment samples submitted for laboratory
 analysis above the established Screening Levels. However, the laboratory MDL for Aniline
 was greater than the established Screening Level for the Clarkes Bayou sediment. No other
 SVOC constituents exceeded the established Screening Levels for the Clarkes Bayou
 sediment samples.

8.0 RECOMMENDATIONS

The following recommendations for future actions are based on evaluation of the data presented within this Report:

- Implement quarterly groundwater monitoring and reporting of the Area I monitoring wells,
 MW-1 through MW-6 throughout the duration of the M6 Destruction Project in accordance with the Revised QASP Soil and Water; and
- Upon completion of the M6 Destruction Project, conduct a post M6 Destruction Project
 environmental site investigation in accordance with the Revised QASP Soil and Water to
 compare the soil, water, groundwater and sediment results to the Baseline Environmental
 Site Investigation data to determine site closeout and restoration of the site.

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 1 of 5

					Sample Id ¹	2015.08.17 A1	2015.08.17 A3	2015.08.17 A5	2015.08.17 A1.6	2015.08.18 B2.3	2015.08.17 C1	2015.08.17 C3	2015.08.17 C5	2015.08.17 C1.6	2015.08.17 E1	2015.08.17 E3	2015.08.17 E5	2015.08.18 E6.5	Analytical Method
Analyte					Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	
Nitroaromatics and Nitramines																			
Regional Screening Level Summary Table ²	Residential Soil	Industri	al Soil	Screening Level ²															
1,3,5-Trinitrobenzene	220,000	3,200,	,000	3,200,000	ug/kg	<25	<25	27	<26	<25	<26	<27	<27	<27	<25	<27	<26	<25	8330B
1,3-Dinitrobenzene	630	8,20	00	8,200	ug/kg	<40	<39	<43	<42	<39	<41	<43	<43	<43	<40	<43	<42	<40	8330B
2,4,6-Trinitrotoluene	3,600	51,0	00	51,000	ug/kg	<33	<32	<36	<34	<32	<33	<35	<36	<36	<33	<35	<34	<32	8330B
2,4-Dinitrotoluene	1,700	7,40	00	7,400	ug/kg	<35	<34	<38	<36	<34	<35	<37	<38	<38	⊲5	<37	<36	<34	8330B
2,6-Dinitrotoluene	360	1,50	00	1,500	ug/kg	<59	<57	<64	<61	<57	<60	<63	<63	<64	<58	<63	<61	<58	8330B
2-Amino-4,6-dinitrotoluene	15,000	230,0	000	230,000	ug/kg	<40	<38	<43	<41	<39	<40	<42	<43	<43	<39	<42	<41	<39	8330B
4-Amino-2,6-dinitrotoluene	15,000	230,0	000	230,000	ug/kg	<87	<84	<93	<89	<84	<87	<92	<93	<93	<86	<92	<90	<85	8330B
3-Nitrotoluene	630	8,20	00	8,200	ug/kg	<52	<50	<55	<53	<50	<52	<55	<55	<55	<51	<55	<54	<51	8330B
Nitrobenzene	5,100	22,0	00	22,000	ug/kg	<40	<39	<43	<41	<39	<40	<43	<43	<43	<40	<43	<42	<39	8330B
Nitroglycerin	630	8,20	00	8,200	ug/kg	<250	<240	<270	<260	<240	<250	<270	<270	<270	<250	<270	<260	<250	8330B
2-Nitrotoluene	3,200	15,0	00	15,000	ug/kg	<60	<58	<65	<62	<59	<61	<64	<65	<65	<60	<64	<63	<59	8330B
4-Nitrotoluene	25,000	140,0	000	140,000	ug/kg	<75	<73	<81	<78	<73	<76	<80	<81	<81	<75	<80	<78	<74	8330B 8330B
Pentaerythritol Tetranitrate	13,000	160,0	000	160,000	ug/kg	<320	<310	<340	<330	<310	<320	<340	<340	<340	<320	<340	<330	<310	8330B
RDX	6,100	28,0	00	28,000	ug/kg	<58	<56	<62	<60	<56	<58	<61	<62	<62	<57	<62	<60	<57	8330B 8330B
HMX	390,000	5,700,	.000	5,700,000	ug/kg	<36	<35	<39	<37	<35	<36	<38	<39	<39	<36	<38	<37	<35	
Tetryl	16,000	230,0	000	230,000	ug/kg	<43	<41	<46	<44	<41	<43	<45	<46	<46	<42	<45	<44	<42	8330B
Volatile Organic Compounds											-13	1 -10	-10	140	V42	~43	N44	V42	8330B
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³															
1,1,1,2-Tetrachloroethane	2,700	5,900	46	46	ug/kg	<0.29	<0.29	<0.37	<0.32	<0.31	<0.31	<0.31	< 0.30	< 0.32	<0.31 *	< 0.34	<0.32	<0.33	8260C
1,1,1-Trichloroethane	82,000	700,000	4,000	4,000	ug/kg	<0.36	<0.36	<0.45	<0.39	<0.38	<0.38	<0.38	<0.36	< 0.39	< 0.38	< 0.41	< 0.40	<0.40	8260C
1,1,2,2-Tetrachloroethane	810	2,000	6	6	ug/kg	<0.33 *	<0.33	<0.42	<0.37 *	< 0.35	<0.36 *	<0.36	<0.34 *	<0.37 *	<0.36 *	<0.38 *	< 0.37	<0.37	8260C
1,1,2-Trichloroethane	1,900	4,300	58	58	ug/kg	<0.47	<0.48	<0.60	<0.52	< 0.51	<0.51	< 0.51	<0.48	< 0.52	<0.51 *	<0.55	< 0.53	<0.53	8260C
1,1-Dichloroethane	66,000	470,000	7,500	7,500	ug/kg	<0.32	< 0.33	<0.41	< 0.36	< 0.35	< 0.35	< 0.35	< 0.33	< 0.36	<0.35	<0.38	<0.36	<0.36	8260C
1,1-Dichloroethene	13,000	91,000	85	85	ug/kg	<1.3	<1.3	<1.7	<1.5	<1.4	<1.4	<1.4	<1.4	<1.5	<1.4	<1.5	<1,5	<1.5	8260C
1,2-Dibromo-3-chloropropane	180	1,600	10	10	ug/kg	<1.2 *	<1.2	<1.5	<1.3 *	<1.3	<1.3 *	<1.3	<1.2 *	<1.3 *	<1.3 *	<1.4 *	<1.3	<1.4	8260C
. a mi	820	* ***							1.5	1.3	1.0	1.3					210		
1,2-Dichloroethane	820	1,800	35	35	ug/kg	<0.72	<0.73	<0.92	<0.80	<0.77		<0.78				< 0.84	< 0.80	< 0.81	8260C
1,2-Dichloropropane	690	1,800	35 42			<0.72 <0.32	<0.73 <0.32				<0.78		<0.74	<0.79	<0.78	<0.84	<0.80	<0.81	8260C 8260C
/		1		35	ug/kg			<0.92	<0.80	<0.77	<0.78 <0.34	<0.78 <0.34	<0.74 <0.32	<0.79 <0.35	<0.78 <0.34	<0.37	<0.35	<0.36	8260C
1,2-Dichloropropane	690	1,800	42	35 42	ug/kg ug/kg	<0.32	<0.32	<0.92 <0.40	<0.80 <0.35	<0.77 <0.34	<0.78	<0.78	<0.74	<0.79	<0.78 <0.34 <0.85			<0.36 <0.89	8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone)	690 3,100	1,800 10,000	42 40	35 42 40	ug/kg ug/kg ug/kg	<0.32 <0.79	<0.32 <0.79	<0.92 <0.40 <1.0	<0.80 <0.35 <0.87	<0.77 <0.34 <0.84	<0.78 <0.34 <0.85 <1.7	<0.78 <0.34 <0.85 <1.7	<0.74 <0.32 <0.81 <1.6	<0.79 <0.35 <0.87 <1.8	<0.78 <0.34 <0.85 <1.7	<0.37 <0.91 <1.8	<0.35 <0.88 <1.8	<0.36 <0.89 <1.8	8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone)	690 3,100 590,000	1,800 10,000 4,400,000	42 40 5,000	35 42 40 5,000	ug/kg ug/kg ug/kg ug/kg	<0.32 <0.79 <1.6	<0.32 <0.79 <1.6	<0.92 <0.40 <1.0 <2.0	<0.80 <0.35 <0.87 <1.8 <0.67	<0.77 <0.34 <0.84 <1.7 <0.65	<0.78 <0.34 <0.85 <1.7 <0.65	<0.78 <0.34 <0.85 <1.7 <0.65	<0.74 <0.32 <0.81 <1.6 <0.62	<0.79 <0.35 <0.87 <1.8 <0.67	<0.78 <0.34 <0.85 <1.7 <0.65 *	<0.37 <0.91 <1.8 <0.70	<0.35 <0.88 <1.8 <0.67	<0.36 <0.89 <1.8 <0.68	8260C 8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone)	690 3,100 590,000 450,000	1,800 10,000 4,400,000 3,100,000	42 40 5,000 6,400	35 42 40 5,000 6,400	ug/kg ug/kg ug/kg ug/kg ug/kg	<0.32 <0.79 <1.6 <0.61	<0.32 <0.79 <1.6 <0.61	<0.92 <0.40 <1.0 <2.0 <0.77	<0.80 <0.35 <0.87 <1.8 <0.67 8.9 J	<0.77 <0.34 <0.84 <1.7 <0.65 <5.7	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8	<0.74 <0.32 <0.81 <1.6 <0.62 <5.5	<0.79 <0.35 <0.87 <1.8 <0.67 12 J	<0.78 <0.34 <0.85 <1.7 <0.65 *	<0.37 <0.91 <1.8 <0.70 <6.2	<0.35 <0.88 <1.8 <0.67 14 J	<0.36 <0.89 <1.8 <0.68	8260C 8260C 8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone	690 3,100 590,000 450,000 170,000	1,800 10,000 4,400,000 3,100,000 1,400,000	42 40 5,000 6,400 1,500	35 42 40 5,000 6,400 1,500	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<0.32 <0.79 <1.6 <0.61 <5.4	<0.32 <0.79 <1.6 <0.61 <5.4	<0.92 <0.40 <1.0 <2.0 <0.77 <6.8	<0.80 <0.35 <0.87 <1.8 <0.67 8.9 J <0.23	<0.77 <0.34 <0.84 <1.7 <0.65 <5.7 <0.22	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22	<0.74 <0.32 <0.81 <1.6 <0.62 <5.5 <0.21	<0.79 <0.35 <0.87 <1.8 <0.67 12 J <0.23	<0.78 <0.34 <0.85 <1.7 <0.65 * <5.8 <0.22	<0.37 <0.91 <1.8 <0.70 <6.2 <0.24	<0.35 <0.88 <1.8 <0.67 14 J <0.23	<0.36 <0.89 <1.8 <0.68 100 <0.23	8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene	690 3,100 590,000 450,000 170,000 1,500	1,800 10,000 4,400,000 3,100,000 1,400,000 3,100	42 40 5,000 6,400 1,500 51	35 42 40 5,000 6,400 1,500 51	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21	<0.92 <0.40 <1.0 <2.0 <0.77 <6.8 <0.26 <0.26	<0.80 <0.35 <0.87 <1.8 <0.67 8.9 J <0.23 <0.23	<0.77 <0.34 <0.84 <1.7 <0.65 <5.7 <0.22 <0.22	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22	<0.74 <0.32 <0.81 <1.6 <0.62 <5.5 <0.21 <0.21	<0.79 <0.35 <0.87 <1.8 <0.67 12 J <0.23 <0.23	<0.78 <0.34 <0.85 <1.7 <0.65 * <5.8 <0.22 <0.22	<0.37 <0.91 <1.8 <0.70 <6.2 <0.24 <0.24	<0.35 <0.88 <1.8 <0.67 14 J <0.23 <0.23	<0.36 <0.89 <1.8 <0.68 100 <0.23 <0.23	8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane	690 3,100 590,000 450,000 170,000 1,500 1,800	1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200	42 40 5,000 6,400 1,500 51 920	35 42 40 5,000 6,400 1,500 51 920	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21	<0.92 <0.40 <1.0 <2.0 <0.77 <6.8 <0.26	<0.80 <0.35 <0.87 <1.8 <0.67 8.9 J <0.23 <0.23 <0.34 *	<0.77 <0.34 <0.84 <1.7 <0.65 <5.7 <0.22 <0.22 <0.33	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 *	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33	<0.74 <0.32 <0.81 <1.6 <0.62 <5.5 <0.21 <0.21 <0.31 *	<0.79 <0.35 <0.87 <1.8 <0.67 12 J <0.23 <0.23 <0.34 *	<0.78 <0.34 <0.85 <1.7 <0.65 * <5.8 <0.22 <0.22 <0.33 *	<0.37 <0.91 <1.8 <0.70 <6.2 <0.24 <0.24 <0.36 *	<0.35 <0.88 <1.8 <0.67 14 J <0.23 <0.23 <0.34	<0.36 <0.89 <1.8 <0.68 100 <0.23 <0.23 <0.35	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform	690 3,100 590,000 450,000 170,000 1,500 1,800 48,000	1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000	42 40 5,000 6,400 1,500 51 920 1,800	35 42 40 5,000 6,400 1,500 51 920 1,800	ug/kg	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 *	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31	<0.92 <0.40 <1.0 <2.0 <0.77 <6.8 <0.26 <0.26 <0.39	<0.80 <0.35 <0.87 <1.8 <0.67 8.9 J <0.23 <0.23 <0.34 *	<0.77 <0.34 <0.84 <1.7 <0.65 <5.7 <0.22 <0.22 <0.33 <0.97	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 * <0.98	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 <0.98	<0.74 <0.32 <0.81 <1.6 <0.62 <5.5 <0.21 <0.21 <0.31 *	<0.79 <0.35 <0.87 <1.8 <0.67 12 J <0.23 <0.23 <0.34 *	<0.78 <0.34 <0.85 <1.7 <0.65 * <5.8 <0.22 <0.22 <0.23 * <0.98	<0.37 <0.91 <1.8 <0.70 <6.2 <0.24 <0.24 <0.36 *	<0.35 <0.88 <1.8 <0.67 14 J <0.23 <0.23 <0.23 <0.34 <1.0	<0.36 <0.89 <1.8 <0.68 100 <0.23 <0.23 <0.35 <1.0	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane	690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430	1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000	42 40 5,000 6,400 1,500 51 920 1,800 40	35 42 40 5,000 6,400 1,500 51 920 1,800 40	ug/kg	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 * <0.91 <0.57	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 <0.92	<0.92 <0.40 <1.0 <2.0 <0.77 <6.8 <0.26 <0.26 <0.39 <1.2	<0.80 <0.35 <0.87 <1.8 <0.67 8.9 J <0.23 <0.23 <0.34 * <1.0 <0.63	<0.77 <0.34 <0.84 <1.7 <0.65 <5.7 <0.22 <0.22 <0.33 <0.97 <0.61	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 * <0.98 <0.62	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 <0.98 <0.62	<0.74 <0.32 <0.81 <1.6 <0.62 <5.5 <0.21 <0.21 <0.31 * <0.93 <0.59	<0.79 <0.35 <0.87 <1.8 <0.67 12 J <0.23 <0.23 <0.34 * <1.0 <0.63	<0.78 <0.34 <0.85 <1.7 <0.65 * <5.8 <0.22 <0.22 <0.33 * <0.98 <0.62	<0.37 <0.91 <1.8 <0.70 <6.2 <0.24 <0.24 <0.36 * <1.1 <0.66	<0.35 <0.88 <1.8 <0.67 14 J <0.23 <0.23 <0.23 <0.34 <1.0 <0.64	<0.36 <0.89 <1.8 <0.68 100 <0.23 <0.23 <0.35 <1.0 <0.65	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide	690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000	1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000	42 40 5,000 6,400 1,500 51 920 1,800 40 11,000	35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000	ug/kg	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 * <0.91 <0.57 <0.42	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 <0.92 <0.58 <0.43	<0.92 <0.40 <1.0 <2.0 <0.77 <6.8 <0.26 <0.26 <0.39 <1.2 <0.73 <0.54	<0.80 <0.35 <0.87 <1.8 <0.67 8.9 J <0.23 <0.23 <0.23 <0.34 * <1.0 <0.63 <0.47	<0.77 <0.34 <0.84 <1.7 <0.65 <5.7 <0.22 <0.22 <0.23 <0.97 <0.61 <0.45	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.23 <0.98 <0.62 <0.46	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.22 <0.33 <0.98 <0.62 <0.46	<0.74 <0.32 <0.81 <1.6 <0.62 <5.5 <0.21 <0.21 <0.31 * <0.93 <0.59 <0.43	<0.79 <0.35 <0.87 <1.8 <0.67 12 J <0.23 <0.23 <0.34 * <1.0 <0.63 <0.47	<0.78 <0.34 <0.85 <1.7 <0.65 * <5.8 <0.22 <0.22 <0.33 * <0.98 <0.62 <0.46	<0.37 <0.91 <1.8 <0.70 <6.2 <0.24 <0.24 <0.36 * <1.1 <0.66 <0.49	<0.35 <0.88 <1.8 <0.67 14 J <0.23 <0.23 <0.23 <0.34 <1.0 <0.64 <0.47	<0.36 <0.89 <1.8 <0.68 100 <0.23 <0.23 <0.35 <1.0 <0.65 <0.48	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride	690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180	1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100	42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110	35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000	ug/kg	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 * <0.91 <0.57 <0.42 <0.32	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 <0.92 <0.58 <0.43 <0.32	<0.92 <0.40 <1.0 <2.0 <0.77 <6.8 <0.26 <0.26 <0.39 <1.2 <0.73 <0.54 <0.40	<0.80 <0.35 <0.87 <1.8 <0.67 8.9 J <0.23 <0.23 <0.34 * <1.0 <0.63 <0.47 <0.35	<0.77 <0.34 <0.84 <1.7 <0.65 <5.7 <0.22 <0.22 <0.33 <0.97 <0.61 <0.45 <0.34	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 * <0.98 <0.62 <0.46 <0.34	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.22 <0.33 <0.98 <0.62 <0.46 <0.34	<0.74 <0.32 <0.81 <1.6 <0.62 <5.5 <0.21 <0.31 * <0.93 <0.59 <0.43 <0.32	<0.79 <0.35 <0.87 <1.8 <0.67 12 J <0.23 <0.23 <0.34 * <1.0 <0.63 <0.47 <0.35	<0.78 <0.34 <0.85 <1.7 <0.65 * <5.8 <0.22 <0.22 <0.33 * <0.98 <0.62 <0.46 <0.34 *	<0.37 <0.91 <1.8 <0.70 <6.2 <0.24 <0.24 <0.36 * <1.1 <0.66 <0.49 <0.37	<0.35 <0.88 <1.8 <0.67 14 J <0.23 <0.23 <0.24 <1.0 <0.64 <0.47 <0.35	<0.36 <0.89 <1.8 <0.68 100 <0.23 <0.23 <0.35 <1.0 <0.65 <0.48 <0.36	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene	690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180 17,000	1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100 120,000	42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000	35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000	ug/kg	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 * <0.91 <0.57 <0.42 <0.32 <0.34	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 <0.92 <0.58 <0.43 <0.32 <0.34	<0.92 <0.40 <1.0 <2.0 <0.77 <6.8 <0.26 <0.26 <0.39 <1.2 <0.73 <0.54 <0.40 <0.43	<0.80 <0.35 <0.87 <1.8 <0.67 8.9 J <0.23 <0.23 <0.23 <0.47 <1.0 <0.63 <0.47 <0.35 <0.38	<0.77 <0.34 <0.84 <1.7 <0.65 <5.7 <0.22 <0.22 <0.33 <0.97 <0.61 <0.45 <0.34 <0.36	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.22 <0.33 * <0.62 <0.46 <0.34 <0.37	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 <0.98 <0.62 <0.46 <0.34 <0.37	<0.74 <0.32 <0.81 <1.6 <0.62 <5.5 <0.21 <0.21 <0.31 * <0.93 <0.59 <0.43 <0.32 <0.35	<0.79 <0.35 <0.87 <1.8 <0.67 12 J <0.23 <0.23 <0.34 * <1.0 <0.63 <0.47 <0.35 <0.37	<0.78 <0.34 <0.85 <1.7 <0.65 * <5.8 <0.22 <0.22 <0.33 * <0.98 <0.62 <0.46 <0.34 * <0.37 *	<0.37 <0.91 <1.8 <0.70 <6.2 <0.24 <0.24 <0.36 * <1.1 <0.66 <0.49 <0.37 <0.39	<0.35 <0.88 <1.8 <0.67 14 J <0.23 <0.23 <0.34 <1.0 <0.64 <0.47 <0.35 <0.38	<0.36 <0.89 <1.8 <0.68 100 <0.23 <0.23 <0.35 <1.0 <0.65 <0.48 <0.36 <0.38	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane (chlorodibromomethane)	690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180 17,000 2,200	1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100 120,000 5,400	42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000 1,000	35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000	ug/kg	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 * <0.91 <0.57 <0.42 <0.32	<0.32 <0.79 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 <0.92 <0.58 <0.43 <0.32	<0.92 <0.40 <1.0 <2.0 <0.77 <6.8 <0.26 <0.26 <0.39 <1.2 <0.73 <0.54 <0.40	<0.80 <0.35 <0.87 <1.8 <0.67 8.9 J <0.23 <0.23 <0.34 * <1.0 <0.63 <0.47 <0.35	<0.77 <0.34 <0.84 <1.7 <0.65 <5.7 <0.22 <0.22 <0.33 <0.97 <0.61 <0.45 <0.34	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 * <0.98 <0.62 <0.46 <0.34	<0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.22 <0.33 <0.98 <0.62 <0.46 <0.34	<0.74 <0.32 <0.81 <1.6 <0.62 <5.5 <0.21 <0.31 * <0.93 <0.59 <0.43 <0.32	<0.79 <0.35 <0.87 <1.8 <0.67 12 J <0.23 <0.23 <0.34 * <1.0 <0.63 <0.47 <0.35	<0.78 <0.34 <0.85 <1.7 <0.65 * <5.8 <0.22 <0.22 <0.33 * <0.98 <0.62 <0.46 <0.34 *	<0.37 <0.91 <1.8 <0.70 <6.2 <0.24 <0.24 <0.36 * <1.1 <0.66 <0.49 <0.37	<0.35 <0.88 <1.8 <0.67 14 J <0.23 <0.23 <0.24 <1.0 <0.64 <0.47 <0.35	<0.36 <0.89 <1.8 <0.68 100 <0.23 <0.23 <0.35 <1.0 <0.65 <0.48 <0.36	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 2 of 5

					Sample Id ¹	2015.08.17 A1	2015.08.17 A3	2015.08.17 A5	2015.08.17 A1.6	2015.08.18 B2.3	2015.08.17 C1	2015.08.17 C3	2015.08.17 C5	2015.08.17 C1.6	2015.08.17 E1	2015.08.17 E3	2015.08.17 E5	2015.08.18 E6.5	Analytical Method
Analyte					Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Oual	Result Qual	Result Qual	Result Qual	Result Oual	
cis-1,2-Dichloroethene	4,800	34,000	490	490	ug/kg	<0.50	<0.50	<0.63	<0.55	<0.53	<0.54	<0.54	<0.51	<0.55	<0.54	<0.58	<0.55	<0.56	8260C
Ethyl benzene	160,000	230,000	19,000	19,000	ug/kg	< 0.25	<0.25	<0.32	<0.27	<0.27	<0.27	<0.27	<0.25	0.54 J	<0.27 *	<0.29	<0.28	<0.28	8260C
Hexachlorobutadiene	820	8,600	5,500	5,500	ug/kg	<0.56 *	<0.57	<0.72	<0.62 *	< 0.60	<0.61 *	<0.61	<0.58 *	<0.62 *	<0.61 *	<0.65 *	<0.63	<0.64	8260C
Isobutylalcohol	730,000	6,200,000	30,000	30,000	ug/kg	<21	<21	<27	<23	<23	<23	<23	<22	<23	<23	<24	<23	<24	8260C
Methyl tert-butyl ether (MTBE)	650,000	4,700,000	77	77	ug/kg	<0.40	<0.40	<0.51	< 0.44	<0.43	<0.43	<0.43	<0.41	<0.44	<0.43	<0.46	<0.44	<0.45	8260C
Methylene Chloride	19,000	44,000	17	17	ug/kg	<1.3	<1.3	<1.7	<1.4	<1.4	<1.4	<1.4	<1.3	<1.4	<1.4	<1.5	<1.5	<1.5	8260C
Styrene	500,000	1,700,000	11,000	11,000	ug/kg	<0.29	<0.29	<0.37	< 0.32	<0.31	<0.31	<0.31	<0.30	<0.32	<0.31 *	<0.34	<0.32	<0.33	8260C
Tetrachloroethene (tetrachloroethylene)	8,300	35,000	180	180	ug/kg	<0.27	<0.27	<0.34	<0.29	<0.28	<0.29	<0.29	<0.27	<0.29	<0.29 *	<0.31	<0.30	<0.30	8260C
Toluene	68,000	470,000	20,000	20,000	ug/kg	<0.58	<0.58	< 0.74	< 0.64	<0.62	<0.63	<0.63	<0.59	<0.64	<0.63 *	<0.67	<0.65	<0.65	8260C
trans-1,2-Dichloroethene	6,900	48,000	770	770	ug/kg	<0.78	<0.79	<0.99	<0.86	<0.83	<0.84	<0.84	<0.80	<0.86	<0.84	<0.90	<0.87	<0.88	8260C 8260C
Trichloroethene	100	210	73	73	ug/kg	<0.32	<0.33	<0.41	<0.36	<0.35	<0.35	<0.35	<0.33	<0.36	<0.35	<0.38	<0.36	<0.36	8260C 8260C
Trichlorofluoromethane	38,000	260,000	37,000	37,000	ug/kg	<0.42	<0.42	<0.53	<0.46	<0.44	<0.45	<0.45	<0.42	<0.46	<0.45	<0.48	<0.46	<0.47	8260C 8260C
Vinyl Chloride	240	790	13	13	ug/kg	<0.36	<0.36	<0.45	<0.39	<0.38	<0.38	<0.38	<0.36	<0.39	<0.38	<0.41	<0.40	<0.40	
Xylenes (total)	18,000	120,000	150,000	120,000	ug/kg	<0.71	<0.71	<0.90	<0.78	<0.75	0.78 J	<0.76	<0.72	7.4 J	<0.76 *	0.86 J	<0.40	<0.79	8260C
Semivolatile Organic Compounds		1	1 200,000	120,000	1 45.45	0.71	-0.71	10.50	-0.70	~0.75	0.76	NO.70	N.72	7.4 3	0.70	U.80 D	<0.79	<0.79	8260C
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³															
1,1 Biphenyl	230,000	230,000	190,000	190,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	1 00 1	92700
1,2,4,5-Tetrachlorobenzene	1,200	12,000	6,900	6,900	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
1.2.4-Trichlorobenzene	66,000	1,200,000	14,000	14,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43		<39	8270D
1.2-Dichlorobenzene	99,000	380,000	29,000	29,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41		-		<40	<39	8270D
1.3-Dichlorobenzene	2,100	18,000	2,100	2,100	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41 <41	<43	<40	<39	8270D
1.3-Dinitrobenzene	450	5,000	250	250	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41		<43	<40	<39	8270D
1.4-Dichlorobenzene	6,700	16,000	5,700	5,700	ug/kg	<40	<39	<45	<42	<40	<42	<41		<41	<41	<43	<40	<39	8270D
2,3,4,6-Tetrachlorophenol	140,000	1,400,000	31,000	31,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41 <41	<41	<41	<43	<40	<39	8270D
2,4,5-Trichlorophenol	530,000	6,600,000	320,000	320,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
2,4,6-Trichlorophenol	40,000	170,000	1,300	1,300	ug/kg	<40	<39	<45	<42	<40	<42	<41		<41	<41	<43	<40	<39	8270D
2,4-Dichlorophenol	16,000	200,000	12,000	12,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
2,4-Dimethylphenol	93,000	1,100,000	20,000	20,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
2,4-Dinitrophenol	7,100	69,000	1,700	1,700	ug/kg	<400 *	<390 *	<450 *	<420 *	<400 *	<420 *	<410 *	<41 <400 *	<41	<41	<43	<40	<39	8270D
2,4-Dinitrotoluene	8,900	98,000	1,000	1,000	ug/kg	<40	<39	<45	<42	<40	<420			<400 *	<410 *	<420 *	<400 *	<390 *	8270D
2,6-Dinitrotoluene	4,300	46,000	390	390	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
2-Chloronaphthalene	500,000	8,300,000	500,000	500,000	ug/kg	<40	<39	<45	<42	<40			<41	<41	<41	<43	<40	<39	8270D
2-Chlorophenol	15,000	140,000	1,400	1,400	ug/kg	<40	<39	<45	<42	<40	<42 <42	<41	<41	<41	<41	<43	<40	<39	8270D
2-Methylnaphthalene	22,000	170,000	1,700	1,700	ug/kg	<40	<39	<45				<41	<41	<41	<41	<43	<40	<39	8270D
2-Nitroaniline	1,700	1,700	1,700	1,700	ug/kg	<40	<39	<45	<42 <42	<40 <40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
3.3-Dichlorobenzidine	970	4,200	1,800	1,800	ug/kg	<400	<390	<450	<420	<400	<42 <420	<41	<41	<41	<41	<43	<40	<39	8270D
3-Nitroaniline	13,000	140,000	1,700	1,700	ug/kg	<400	<39	<45	<420	<400		<410	<400	<400	<410	<420	<400	<390	8270D
4-Nitroaniline	10,000	100,000	1,700	1,700	ug/kg	<400	<390	<450	<420	<400	<42 <420	<41	<41	<41	<41	<43	<40	<39	8270D
4-Nitrophenol	32,000	330,000	2,600	2,600	ug/kg	<400	<390	<450	<420	<400	-	<410	<400	<400	<410	<420	<400	<390	8270D
Acenaphthene	370,000	6,100,000	220,000	220,000	ug/kg	<400	<39	<450	<420		<420	<410	<400	<400	<410	<420	<400	<390	8270D
Acenaphthylene	350,000	5,100,000	88,000	88,000	ug/kg	<40	<39	<45	<42	<40 <40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Aniline	2,400	17,000	65	65		<72					<42	<41	<41	<41	<41	<43	<40	<39	8270D
Anthracene	2,200,000	48,000,000	120,000	120,000	ug/kg ug/kg	<40	<70 <39	<81	<76	<72	<75	<75	<73	<73	<74	<77	<72	<71	8270D
Benz(a)anthracene	620	2,900	330,000	2,900		<40		<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Benzo(a)pyrene	330	330	23,000	330	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Benzo(b)fluoranthene	620	2,900			ug/kg		<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Delizo()/Indorantifette	020	2,900	220,000	2,900	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 3 of 5

					Sample Id ¹	2015.08.17 A1	2015.08.17 A3	2015.08.17 A5	2015.08.17 A1.6	2015.08.18 B2.3	2015.08.17 C1	2015.08.17 C3	2015.08.17 C5	2015.08.17 C1.6	2015.08.17 E1	2015.08.17 E3	2015.08.17 E5	2015.08.18 E6.5	Analytical Method
Analyte					Units	Result Qua	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	
Benzo(k)fluoranthene	6,200	29,000	120,000	29,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Bis(2-chlorisopropyl)ether	4,900	17,000	800	800	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Bis(2-chloroethyl)ether	330	1,100	330	330	ug/kg	<40	<39	<45	<42	<40	<42	<42	<41	<41	<41	<43	<40	<40	8270D
Bis(2-ethylhexyl)phthalate	35,000	170,000	79,000	79,000	ug/kg	<54	<53	<62	<57	<55	<57	<56	<55	<55	<56	<58	<55	<54	8270D
Butyl benzyl phthalate	220,000	220,000	220,000	220,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Chrysene	62,000	290,000	76,000	76,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Dibenz(a,h)anthracene	330	330	540,000	330	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Dibenzofuran	29,000	150,000	24,000	24,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Diethyl phthalate	670,000	670,000	360,000	360,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Dimethyl phthalate	1,500,000	1,500,000	1,500,000	1,500,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Di-n-octyl phthalate	240,000	3,500,000	10,000,000	3,500,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Fluoranthene	220,000	2,900,000	1,200,000	1,200,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Fluorene	280,000	5,400,000	230,000	230,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D 8270D
Hexachlorobenzene	340	2,000	9,600	2,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D 8270D
Hexachlorobutadiene	820	8,600	5,500	5,500	ug/kg	<40	<39	<45	<42	<40 *	<42	<41	<41	<41	<41	<43	<40	<39 *	8270D 8270D
Hexachlorocyclopentadiene	1,400	9,400	1,200,000	9,400	ug/kg	<400	<390	<450	<420	<400	<420	<410	<400	<400	<410	<420	<400	<390	8270D 8270D
Hexachloroethane	5,200	68,000	2,200	2,200	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<400	-	
Indeno(1,2,3-cd)pyrene	620	2,900	9,200	2,900	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Isophorone	340,000	1,100,000	560	560	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Naphthalene	6,200	43,000	1,500	1,500	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43		<39	8270D
Nitrobenzene	2,200	25,000	330	330	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41		<40	<39	8270D
N-Nitrosodi-n-propylamine	330	330	330	330	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<41	<43	<40	<39	8270D
Pentachlorophenol	2,800	9,700	1,700	1,700	ug/kg	<400	<390	<450	<420	<400	<420	<410	<400	<400		<43	<40	<39	8270D
Phenanthrene	2,100,000	43,000,000	660,000	660,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41	<41	<410	<420	<400	<390	8270D
Phenol	1,300,000	15,000,000	11,000	11,000	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41		<41	<43	<40	<39	8270D
Pyrene	230,000	5,600,000	1,100,000	1,100,000	ug/kg	<40	<39	<45	<42	<40	<42	<41		<41	<41	<43	<40	<39	8270D
N-Nitrosodiphenylamine	90,000	400,000	2,100	2,100	ug/kg	<40	<39	<45	<42	<40	<42	<41	<41 <41	<41	<41	<43	<40	<39	8270D
Regional Screening Level Summary Table ²	Residential Soil	Industr		Screening Level ²	49.45	1 - 10	57	100	42	V40	V4Z	N41	N41	<41	<41	<43	<40	<39	8270D
Di-n-butyl phthalate	630,000	8,200	0.000	8,200,000	ug/kg	<40	<39	<45	<42	<40	<42	211		-41		-42	-10		
Diphenylamine	160,000	2,100		2,100,000	ug/kg	<40 *	<39 *	<45 *	<42 *	<40	<42 *	<41 *	<41	<41	<41	<43	<40	<39	8270D
RCRA Metals	1		,,,,,,	2,200,000	ll abye	~10.	57	V43	V4Z	V40	N42	(41	<41 *	<41 *	<41 *	<43 *	<40 *	<39	8270D
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³								-3							
Arsenic	12	12	100	12	mg/kg	NA	NA	NA	NA	5.8	NA	NA	NA	NA	MA I	NIA I	MA		(000.
Barium	550	14,000	2,000	2,000	mg/kg	NA	NA	NA NA	NA NA	160	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	6	6020A
Cadmium	3.9	100	20	20	mg/kg	NA NA	NA NA	NA NA	NA NA	<0.045	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	100	6020A
Chromium	23	610	100	100	mg/kg	NA NA	NA NA	NA NA	NA NA	24	NA NA		NA NA	NA NA	NA.	NA NA	NA NA	0.21	6020A
Lead	400	1,400	100	100	mg/kg	NA NA	NA NA	NA NA	NA NA	19	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	19	6020A
Mercury	2.3	61	4	4	mg/kg	NA NA	NA NA	NA NA	NA NA	0.013 J		NA NA	NA NA	NA NA	NA NA	NA NA	NA	19	6020A
Selenium	39	1,000	20	20	mg/kg	NA NA	NA NA	NA NA			NA.	NA NA	NA NA	NA NA	NA NA	NA	NA	0.053	7471B
Silver	39	1,000	100	100	mg/kg	NA NA	NA NA	NA NA	NA NA	2.4 <0.067	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.6	6020A 6020A

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 4 of 5

					Sample Id ¹	2015.08.17 A1	2015.08.17 A3	2015.08.17 A5	2015.08.17 A1.6	2015.08.18 B2.3	2015.08.17 C1	2015.08.17 C3	2015.08.17 C5	2015.08.17 C1.6	2015.08.17 E1	2015.08.17 E3	2015.08.17 E5	2015.08.18 E6.5	Analytical Method
Analyte					Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	
Dioxins and Furans																			
Regional Screening Level Summary Table ⁴	Residential Soil	Industr	ial Soil	Screening Level ⁴															
2,3,7,8-TCDD	4.9	2	2	22	pg/g	NA	NA	NA	NA	<0.047	NA	NA	NA	NA	NA	NA	NA	<0.054	1613B
2,3,7,8-TetraCDF	NP	N	P	NP	pg/g	NA	NA	NA	NA	<0.038	NA	NA	NA	NA	NA	NA	NA	0.075 J, q	1613B
1,2,3,7,8-PentaCDD	NP	N	P	NP	pg/g	NA	NA	NA	NA	<0.066	NA	NA	NA	NA	NA	NA	NA	<0.088	1613B
1,2,3,7,8-PentaCDF	NP	N	P	NP	pg/g	NA	NA	NA	NA	<0.047	NA	NA	NA	NA	NA	NA	NA	<0.053	1613B
2,3,4,7,8-PentaCDF	NP	N	P	NP	pg/g	NA	NA	NA	NA	< 0.054	NA	NA	NA	NA	NA	NA	NA	<0.061	1613B
1,2,3,4,7,8-HexaCDD	NP	N	P	NP	pg/g	NA	NA	NA	NA	0.16 J, q	NA	NA	NA	NA	NA	NA	NA	0.28 J. q	1613B
1,2,3,6,7,8-HexaCDD	NP	N	P	NP	pg/g	NA	NA	NA	NA	0.093 J, q	NA	NA	NA	NA	NA	NA	NA	0.37 J, q	1613B
1,2,3,7,8,9-HexaCDD	NP	N	P	NP	pg/g	NA	NA	NA	NA	0.27 J	NA	NA	NA	NA	NA	NA	NA	0.49 J, q	1613B
1,2,3,4,7,8-HexaCDF	NP	N	P	NP	pg/g	NA.	NA	NA	NA	< 0.033	NA	NA	NA	NA	NA	NA	NA	0.08 J, q	1613B
1,2,3,6,7,8-HexaCDF	NP	N	P	NP	pg/g	NA	NA	NA	NA	< 0.030	NA	NA	NA	NA	NA	NA NA	NA NA	0.092 J	1613B
1,2,3,7,8,9-HexaCDF	NP	N	P	NP	pg/g	NA	NA	NA	NA	< 0.029	NA	NA	NA	NA	NA	NA	NA NA	0.092 J 0.083 J, q	1613B
2,3,4,6,7,8-HexaCDF	NP	N	P	NP	pg/g	NA	NA	NA	NA	< 0.029	NA	NA	NA	NA	NA	NA NA	NA NA	0.058 J	1613B
1,2,3,4,6,7,8-HeptaCDD	NP	N	P	NP	pg/g	NA	NA	NA	NA	8.9 B	NA	NA	NA	NA	NA	NA	NA NA	29 B	1613B
1,2,3,4,6,7,8-HeptaCDF	NP	N	P	NP	pg/g	NA	NA	NA	NA	< 0.048	NA	NA	NA	NA	NA	NA	NA	0.46 J, B	1613B
1,2,3,4,7,8,9-HeptaCDF	NP	N	P	NP	pg/g	NA	NA	NA	NA	< 0.063	NA	NA	NA	NA	NA	NA	NA NA	<0.079	1613B
OctaCDD	NP	N	P	NP	pg/g	NA	NA	NA	NA	970 B	NA	NA	NA	NA	NA	NA	NA NA	7300 E, B	1613B
OctaCDF	NP	N	P	NP	pg/g	NA	NA	NA	NA	0.27 J, B	NA	NA	NA	NA	NA	NA NA	NA NA	1.0 J, B	1613B
General Chemistry					100					1		1	141	1.11	141	Tur	IM	1.0 [3, 15	1013B
Regional Screening Level Summary Table ²	Residential Soil	Industr	ial Soil	Screening Level ²															
Nitrocellulose	19,000,000	250,00	0,000	250,000,000	mg/kg	NA.	NA	NA	NA	<0.95	NA	NA	NA	NA	NA	NA	NA	1.0 J	252.2.317
Diesel Range Organics					1				141	10.55	141	IM	M	. IVA	IVA	INA	NA	1.0 [3	353.2_Nitroce
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³															
Diesel Range Organics [C10-C28]	65	510	65	65	mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.39	8015B DRC
Gasoline Range Organics														1311	141	141	m	~0.37	OVIJD_DRU
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³															
Gasoline Range Organics [C6-C12]	65	510	65	65	mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.012	8015B GRC

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 5 of 5

	Id ¹	A1	A3	A5	A1.6	B2.3	C1	C3	C5	C1.6	2015.08.17 E1	E3	E5	2015.08.18 E6.5	Analytical Method
Analyte	Units	Result Qual	Result Oual	Result Qual	Result Qual	Result Onal	Result Qual	Result Qual	Result Qual	Result Qual					

Concentrations in red bold indicate the result exceeds the Screening Level.

Abbreviations:

<= Not detected at the reporting limit (or MDL or EDL if shown)

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

F2= MS/MSD RPD exceeds control limits

F1= MS and/or MSD Recovery is outside acceptance limits

B= Compound was found in the blank and sample

q= the reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

*=LCS or LCSD is outside acceptance limits

ug/kg = micrograms per killograms

mg/kg = milligrams per killograms

pg/g = picogram per gram

RECAP = Risk Evaluation/Corrective Action Program

SSni = Soil Screening non-industrial

SSi = Soil Screening industrial

SSGW = Soil Screening protective of groundwater

NA = Not Analyzed

NP = Not Published

¹ Sample Identification = collection date (year.month.day) predetermined onsite grid location. All Area I surface soil samples were collected from 0-2 feet below ground surface. Four surface soil sample locations (B2.3; E6.5; H2; and O-0.2) were analyzed for additional parameters.

² The United States Environmental Protection Agency (USEPA) Regional Screening Level (RSL) Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for industrial soil was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

³ The most conservative Louisiana Department of Environmental Quality (LDEQ) Risk Evaluation/Corrective Action Program (RECAP) Screening Standard (RSS) (dated October 2003) of the soil for industrial use (SSi) and the soil concentration protective of groundwater (SSGW) was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

⁴ The USEPA, RSL Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for industrial soil was determined as the Screening Level for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). The 2005 World Hospital Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors (TEFs) for Dioxins and Dioxin like compounds were used to calculate the total TCDD Toxic Equivalent (TEQ) in each medium. Total TEQs in each medium were compared to the Screening Level for TCDD. Data from the baseline sample event will establish site closeout and site restoration.

⁵ Arsenic was reanalyzed in the surface soil sample location O-0.2. Reported result of Arsenic reanalysis was 3.2 mg/kg. The laboratory noted the sample was non-homogenous and could be the cause of the discrepant results. Concentrations in bold indicate the MDL exceeds the Screening Level.

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 1 of 5

					Sample Id ¹	2015.08.18 F7.5	2015.08.18 DUP#04 (F7.5)	2015.08.17 G1	2015.08.17 G3	2015.08.17 G5	2015.08.17 DUP#01 (G5)	2015.08.18 H2	2015.08.17 H4	2015.08.17	2015.08.17 DUP#02 (I1)	2015.08.18 I3	2015.08.17 I5	2015.08.17 K1	Analytical Method
Analyte					Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	
Nitroaromatics and Nitramines																			
Regional Screening Level Summary Table ²	Residential Soil	Industri	al Soil	Screening Level ²															
1,3,5-Trinitrobenzene	220,000	3,200,	.000	3,200,000	ug/kg	<27	<27	<26	<27	<25	<25	<25	<26	<25	<27	<27	<25	<27	8330B
1,3-Dinitrobenzene	630	8,20	00	8,200	ug/kg	<43	<43	<42	<43	<40	<40	<39	<41	<40	<43	<43	<40	<43	8330B
2,4,6-Trinitrotoluene	3,600	51,0	00	51,000	ug/kg	<35	<35	<34	<35	<33	<33	<32	<34	<33	<36	<36	<33	<35	8330B
2,4-Dinitrotoluene	1,700	7,40	00	7,400	ug/kg	<37 F1	<37	<36	<37	<34	<35	<34	<36	<35	<38	<38	<34	<37	8330B
2,6-Dinitrotoluene	360	1,50	00	1,500	ug/kg	<63	<62	<61	<63	<58	<59	<57	<61	<58	<64	<64	<58	<63	8330B
2-Amino-4,6-dinitrotoluene	15,000	230,0	000	230,000	ug/kg	<43	<42	<41	<42	<39	<40	<38	<41	<39	<43	<43	<39	<42	8330B
4-Amino-2,6-dinitrotoluene	15,000	230,0	000	230,000	ug/kg	<93	<91	<89	<92	<85	<86	<84	<89	<85	<93	<93	<85	<92	8330B
3-Nitrotoluene	630	8,20		8,200	ug/kg	<55	<55	<53	<55	<51	<51	<50	<53	<51	<56	<55	<51	<55	8330B
Nitrobenzene	5,100	22,0	00	22,000	ug/kg	<43	<42	<41	<43	<39	<40	<39	<41	<40	<43	<43	<39	<43	8330B
Nitroglycerin	630	8,20		8,200	ug/kg	<270	<260	<260	<270	<250	<250	<240	<260	<250	<270	<270	<250	<270	8330B
2-Nitrotoluene	3,200	15,0	00	15,000	ug/kg	<65	<64	<62	<64	<59	<60	<58	<62	<60	<65	<65	<59	<64	8330B
4-Nitrotoluene	25,000	140,0	000	140,000	ug/kg	<81	<80	<78	<80	<74	<75	<73	<77	<74	<81	<81	<74	<80	8330B
Pentaerythritol Tetranitrate	13,000	160,0	000	160,000	ug/kg	<340	<340	<330	<340	<310	<320	<310	<330	<310	<340	<340	<310	<340	8330B
RDX	6,100	28,0	00	28,000	ug/kg	<62	<61	<60	<62	<57	<57	<56	<59	<57	<62	<62	<57	<61	8330B
HMX	390,000	5,700,	000	5,700,000	ug/kg	<39	<38	<37	<38	<35	<36	<35	<37	<36	<39	<39	<35	<38	8330B
Tetryl	16,000	230,0	000	230,000	ug/kg	<46	<45	<44	<45	<42	<42	<41	<44 F1	<42	<46	<46	<42	<45	8330B
Volatile Organic Compounds																	1,12	45	0330D
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³															
1,1,1,2-Tetrachloroethane				Level															
	2,700	5,900	46	Level 46	ug/kg	<0.40 F2	<0.37	<0.30	<0.29	<0.31	<0.33	<0.32	<0.35	<0.34	<0.34	<0.30	<0.32	C0 22 #	92600
1,1,1-Trichloroethane	2,700 82,000	5,900 700,000	46 4,000		ug/kg ug/kg	<0.40 F2 <0.50 F2	<0.37 <0.45	<0.30 <0.37	<0.29 <0.36	<0.31	<0.33	<0.32	<0.35	<0.34	<0.34	<0.39	<0.32	<0.33 *	8260C
1,1,2,2-Tetrachloroethane				46	ug/kg	<0.50 F2	<0.45	<0.37	<0.36	<0.38	<0.41	<0.39	<0.44 F2	<0.42	<0.42	<0.48	<0.39	<0.41	8260C
	82,000	700,000	4,000	46 4,000		<0.50 F2 <0.46 F2	<0.45 <0.42	<0.37 <0.34 *	<0.36 <0.34 *	<0.38 <0.35 *	<0.41 <0.38 *	<0.39 <0.36	<0.44 F2 <0.41 *	<0.42 <0.39	<0.42 <0.39	<0.48 <0.44	<0.39 <0.37 *	<0.41 <0.38 *	8260C 8260C
1,1,2,2-Tetrachloroethane	82,000 810	700,000 2,000	4,000 6	46 4,000 6 58	ug/kg ug/kg ug/kg	<0.50 F2 <0.46 F2 <0.66 F2	<0.45 <0.42 <0.60	<0.37 <0.34 * <0.49	<0.36 <0.34 * <0.48	<0.38 <0.35 * <0.50	<0.41 <0.38 * <0.54	<0.39 <0.36 <0.52	<0.44 F2 <0.41 * <0.58	<0.42 <0.39 <0.55	<0.42 <0.39 <0.56	<0.48 <0.44 <0.63	<0.39 <0.37 * <0.52	<0.41 <0.38 * <0.54 *	8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	82,000 810 1,900	700,000 2,000 4,300	4,000 6 58	46 4,000 6	ug/kg ug/kg ug/kg ug/kg	<0.50 F2 <0.46 F2 <0.66 F2 <0.45 F2	<0.45 <0.42 <0.60 <0.41	<0.37 <0.34 * <0.49 <0.33	<0.36 <0.34 * <0.48 <0.33	<0.38 <0.35 * <0.50 <0.34	<0.41 <0.38 * <0.54 <0.37	<0.39 <0.36 <0.52 <0.36	<0.44 F2 <0.41 * <0.58 <0.40	<0.42 <0.39 <0.55 <0.38	<0.42 <0.39 <0.56 <0.38	<0.48 <0.44 <0.63 <0.43	<0.39 <0.37 * <0.52 <0.36	<0.41 <0.38 * <0.54 * <0.37	8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	82,000 810 1,900 66,000	700,000 2,000 4,300 470,000	4,000 6 58 7,500	46 4,000 6 58 7,500	ug/kg ug/kg ug/kg ug/kg ug/kg	<0.50 F2 <0.46 F2 <0.66 F2 <0.45 F2 <1.9	<0.45 <0.42 <0.60 <0.41 <1.7	<0.37 <0.34 * <0.49 <0.33 <1.4	<0.36 <0.34 * <0.48 <0.33 <1.3	<0.38 <0.35 * <0.50 <0.34 <1.4	<0.41 <0.38 * <0.54 <0.37 <1.5	<0.39 <0.36 <0.52 <0.36 <1.5	<0.44 F2 <0.41 * <0.58 <0.40 <1.6	<0.42 <0.39 <0.55 <0.38 <1.6	<0.42 <0.39 <0.56 <0.38 <1.6	<0.48 <0.44 <0.63 <0.43 <1.8	<0.39 <0.37 * <0.52 <0.36 <1.5	<0.41 <0.38 * <0.54 * <0.37 <1.5	8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	82,000 810 1,900 66,000 13,000	700,000 2,000 4,300 470,000 91,000	4,000 6 58 7,500 85	46 4,000 6 58 7,500 85	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<0.50 F2 <0.46 F2 <0.66 F2 <0.45 F2 <1.9 <1.7 F2	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 *	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 *	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 *	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 *	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 *	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 *	<0.41 <0.38 * <0.54 * <0.37 <1.5 <1.4 *	8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane	82,000 810 1,900 66,000 13,000 180	700,000 2,000 4,300 470,000 91,000 1,600	4,000 6 58 7,500 85	46 4,000 6 58 7,500 85	ug/kg ug/kg ug/kg ug/kg ug/kg	<0.50 F2 <0.46 F2 <0.66 F2 <0.45 F2 <1.9	<0.45 <0.42 <0.60 <0.41 <1.7	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 *	<0.41 <0.38 * <0.54 * <0.37 <1.5 <1.4 * <0.83	8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane	82,000 810 1,900 66,000 13,000 180 820	700,000 2,000 4,300 470,000 91,000 1,600 1,800	4,000 6 58 7,500 85 10 35	46 4,000 6 58 7,500 85 10 35	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<0.50 F2 <0.46 F2 <0.66 F2 <0.45 F2 <1.9 <1.7 F2 <1.0 F2	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.38	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35	<0.41 <0.38 * <0.54 * <0.37 <1.5 <1.4 * <0.83 <0.36	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane	82,000 810 1,900 66,000 13,000 180 820 690	700,000 2,000 4,300 470,000 91,000 1,600 1,800 1,800	4,000 6 58 7,500 85 10 35 42	46 4,000 6 58 7,500 85 10 35 42	ug/kg	<0.50 F2 <0.46 F2 <0.66 F2 <0.45 F2 <1.9 <1.7 F2 <1.0 F2 <0.44 F2 <1.1	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.38 <0.96	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87	<0.41 <0.38 * <0.54 * <0.37 <1.5 <1.4 * <0.83 <0.36 <0.90	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane	82,000 810 1,900 66,000 13,000 180 820 690 3,100	700,000 2,000 4,300 470,000 91,000 1,600 1,800 1,800 10,000	4,000 6 58 7,500 85 10 35 42 40	46 4,000 6 58 7,500 85 10 35 42 40	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<0.50 F2 <0.46 F2 <0.66 F2 <0.45 F2 <1.9 <1.7 F2 <1.0 F2 <0.44 F2 <1.1 <2.2 F2	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 *	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.38 <0.96 <1.9	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8	<0.41 <0.38 * <0.54 * <0.37 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone)	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000	700,000 2,000 4,300 470,000 91,000 1,600 1,800 1,800 10,000 4,400,000	4,000 6 58 7,500 85 10 35 42 40 5,000	46 4,000 6 58 7,500 85 10 35 42 40 5,000	ug/kg	<0.50 F2 <0.46 F2 <0.46 F2 <0.45 F2 <1.9 <1.7 F2 <1.0 F2 <0.44 F2 <1.1 <2.2 F2 <0.84 F2	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 *	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.38 <0.96 <1.9 <0.74	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67	<0.41 <0.38 * <0.54 * <0.37 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 *	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone)	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000 450,000	700,000 2,000 4,300 470,000 91,000 1,600 1,800 1,800 10,000 4,400,000 3,100,000	4,000 6 58 7,500 85 10 35 42 40 5,000 6,400	46 4,000 6 58 7,500 85 10 35 42 40 5,000 6,400	ug/kg	<0.50 F2 <0.46 F2 <0.46 F2 <0.45 F2 <1.9 <1.7 F2 <1.0 F2 <0.44 F2 <1.1 <<2.2 F2 <0.84 F2 23 F1, F2	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76 23	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 * 10 J ₃ B	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61 <5.4	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64 <5.7	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69 16 J	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67 <5.9	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.38 <0.96 <1.9 <0.74 <6.6	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71 74	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72 31	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81 <7.9 J	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67 27	<0.41 <0.38 * <0.54 * <0.57 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 * <6.2	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000 450,000 170,000	700,000 2,000 4,300 470,000 91,000 1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000	4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500	46 4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500	ug/kg	<0.50 F2 <0.46 F2 <0.66 F2 <0.45 F2 <1.9 <1.7 F2 <1.0 F2 <0.44 F2 <1.1 <2.2 F2 <0.84 F2 23 F1, F2 <0.29 F2	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76 23 <0.26	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 * 10 J ₃ B <0.21	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61 <5.4 <0.21	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64 <5.7 <0.22	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69 16 J <0.24	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67 <5.9 <0.23	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.96 <1.9 <0.74 <6.6 <0.25 F2	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71 74 <0.24	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72 31 <0.25	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81 <7.9 J <0.28	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67 27 <0.23	<0.41 <0.38 * <0.54 * <0.57 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 * <6.2 <0.24	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000 450,000 170,000 1,500	700,000 2,000 4,300 4,70,000 91,000 1,600 1,800 1,800 1,800 1,000 4,400,000 3,100,000 1,400,000 3,100	4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51	46 4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51	ug/kg	 <0.50 F2 <0.46 F2 <0.65 F2 <1.9 <1.7 F2 <0.44 F2 <1.1 <2.2 F2 <0.84 F2 <1.1 <2.2 F2 <0.84 F2 <0.84 F2 <0.84 F2 <0.84 F2 <0.84 F2 <0.9 F2 <0.29 F2 <0.29 F2 	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76 23 <0.26 <0.26	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 * 10 J,B <0.21 <0.21	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61 <5.4 <0.21 <0.21	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64 <5.7 <0.22 <0.22	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69 16 J <0.24 <0.24	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67 <5.9 <0.23 <0.23	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.38 <0.96 <1.9 <0.74 <6.6 <0.25 F2 <0.25	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71 74 <0.24 <0.24	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72 31 <0.25 <0.25	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81 7.9 J <0.28 <0.28	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67 27 <0.23 <0.23	<0.41 <0.38 * <0.54 * <0.57 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 * <6.2 <0.24 <0.24	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000 450,000 170,000 1,500 1,800	700,000 2,000 4,300 4,70,000 91,000 1,600 1,800 1,800 1,800 1,000 4,400,000 3,100,000 1,400,000 3,100 4,200	4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920	46 4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920	ug/kg	<0.50 F2 <0.46 F2 <0.66 F2 <0.45 F2 <1.9 <1.7 F2 <1.0 F2 <0.44 F2 <1.1 <2.2 F2 <0.84 F2 23 F1, F2 <0.29 F2	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76 23 <0.26 <0.39	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 * 10 J ₃ B <0.21 <0.21 <0.32 *	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 *	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64 <5.7 <0.22 <0.22 <0.33 *	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69 16 J <0.24 <0.24 <0.35 *	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67 <5.9 <0.23 <0.23 <0.34	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.38 <0.96 <1.9 <0.74 <6.6 <0.25 F2 <0.25 <0.37 *	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71 74 <0.24 <0.24 <0.36	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72 31 <0.25 <0.25 <0.36	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81 7.9 J <0.28 <0.28 <0.41	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67 27 <0.23 <0.23 <0.34 *	<0.41 <0.38 * <0.54 * <0.57 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 * <6.2 <0.24 <0.24 <0.35 *	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000	700,000 2,000 4,300 4,70,000 91,000 1,600 1,800 1,800 1,800 1,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000	4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800	46 4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800	ug/kg	 <0.50 F2 <0.46 F2 <0.65 F2 <1.9 <1.7 F2 <0.44 F2 <0.44 F2 <1.1 <2.2 F2 <0.84 F2 <0.84 F2 <0.29 F2 <0.29 F2 <0.29 F2 <0.29 F2 <0.29 F2 <0.43 F2 	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76 23 <0.26 <0.26 <0.39 <1.2	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 * 10 J ₃ B <0.21 <0.21 <0.32 * <0.94	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 *	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64 <5.7 <0.22 <0.22 <0.33 * <0.97	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69 16 J <0.24 <0.24 <0.35 *	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67 <5.9 <0.23 <0.23 <0.34 <1.0	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.38 <0.96 <1.9 <0.74 <6.6 <0.25 F2 <0.25 <0.37 * <1.1	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71 74 <0.24 <0.24 <0.36 <1.1	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72 31 <0.25 <0.25 <0.36 <1.1	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81 7.9 J <0.28 <0.28 <0.41 <1.2	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67 27 <0.23 <0.23 <0.34 * <1.0	<0.41 <0.38 * <0.54 * <0.57 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 * <6.2 <0.24 <0.24 <0.35 * <1.0	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430	700,000 2,000 4,300 4,70,000 91,000 1,600 1,800 1,800 1,800 1,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000	4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40	46 4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40	ug/kg	 <0.50 F2 <0.46 F2 <0.66 F2 <1.9 F2 <1.0 F2 <0.44 F2 <1.1 F2 <0.84 F2 <0.84 F2 <0.29 F2 <0.29 F2 <0.43 F2 <1.3 F2 	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76 23 <0.26 <0.26 <0.39 <1.2 <0.72	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 * 10 J,B <0.21 <0.21 <0.32 * <0.94 <0.59	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61 <5.4 <0.21 <0.21 <0.31 * <0.92 <0.58	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64 <5.7 <0.22 <0.22 <0.33 * <0.97 <0.61	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69 16 J <0.24 <0.24 <0.35 * <1.0 <0.65	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67 <5.9 <0.23 <0.23 <0.34 <1.0 <0.63	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.38 <0.96 <1.9 <0.74 <6.6 <0.25 F2 <0.25 <0.37 * <1.1 <0.70	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71 74 <0.24 <0.24 <0.26 <0.36 <1.1 <0.67	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72 31 <0.25 <0.25 <0.36 <1.1 <0.68	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81 7.9 J <0.28 <0.28 <0.41 <1.2 <0.76	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67 27 <0.23 <0.23 <0.34 * <1.0 <0.63	<0.41 <0.38 * <0.54 * <0.57 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 * <6.2 <0.24 <0.24 <0.25 <1.0 <0.66	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000	700,000 2,000 4,300 4,70,000 91,000 1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000	4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000	46 4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000	ug/kg	 <0.50 F2 <0.46 F2 <0.65 F2 <1.9 <1.7 F2 <1.0 F2 <0.44 F2 <1.1 <2.2 F2 <0.84 F2 <1.1 <2.2 F2 <0.84 F2 <1.1 <2.29 F2 <0.29 F2 <0.43 F2 <1.3 <0.79 <0.59 F2 	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76 23 <0.26 <0.26 <0.39 <1.2 <0.72 <0.53	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 * 10 J,B <0.21 <0.21 <0.32 * <0.94 <0.59 <0.44	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61 <5.4 <0.21 <0.21 <0.92 <0.58 <0.43	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64 <5.7 <0.22 <0.22 <0.33 * <0.97 <0.61 <0.45	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69 16 J <0.24 <0.24 <0.35 * <1.0 <0.65 <0.48	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67 <5.9 <0.23 <0.23 <0.34 <1.0 <0.63 <0.46	<0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.38 <0.96 <1.9 <0.74 <6.6 <0.25 F2 <0.37 * <1.1 <0.70 <0.52 F2	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71 74 <0.24 <0.24 <0.26 <1.1 <0.67 <0.49	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72 31 <0.25 <0.25 <0.36 <1.1 <0.68 <0.50	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81 7.9 J <0.28 <0.28 <0.41 <1.2 <0.76 <0.56	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67 27 <0.23 <0.23 <0.34 * <1.0 <0.63 <0.47	<0.41 <0.38 * <0.54 * <0.57 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 * <6.2 <0.24 <0.24 <0.24 <0.35 * <1.0 <0.66 <0.49	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180	700,000 2,000 4,300 4,70,000 91,000 1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100	4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110	46 4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110	ug/kg	 <0.50 F2 <0.46 F2 <0.66 F2 <1.9 <1.7 F2 <1.0 F2 <0.44 F2 <1.1 <2.2 F2 <0.84 F2 <1.1 <2.2 F2 <0.84 F2 <1.3 <1.3 <0.79 <0.44 F2 	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76 23 <0.26 <0.26 <0.39 <1.2 <0.72 <0.53 <0.40	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 * 10 J,B <0.21 <0.32 * <0.94 <0.59 <0.44 <0.33	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61 <5.4 <0.21 <0.21 <0.21 <0.92 <0.58 <0.43 <0.32	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64 <5.7 <0.22 <0.22 <0.33 * <0.97 <0.61 <0.45 <0.33	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69 16 J <0.24 <0.24 <0.35 * <1.0 <0.65 <0.48 <0.36	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67 <5.9 <0.23 <0.23 <0.34 <1.0 <0.63 <0.46 <0.35	 <0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.96 <1.9 <0.74 <6.6 <0.25 F2 <0.37 * <1.1 <0.70 <0.52 F2 <0.38 F2 	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71 74 <0.24 <0.24 <0.36 <1.1 <0.67 <0.49 <0.37	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72 31 <0.25 <0.25 <0.36 <1.1 <0.68 <0.50 <0.37	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81 7.9 J <0.28 <0.28 <0.41 <1.2 <0.76 <0.56 <0.42	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67 27 <0.23 <0.23 <0.24 * <1.0 <0.63 <0.47 <0.35	<0.41 <0.38 * <0.54 * <0.57 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 * <6.2 <0.24 <0.24 <0.35 * <1.0 <0.66 <0.49 <0.36 *	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180 17,000	700,000 2,000 4,300 4,300 470,000 91,000 1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100 120,000	4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000	46 4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000 1,000	ug/kg	 <0.50 F2 <0.46 F2 <0.66 F2 <1.9 <1.7 F2 <1.0 F2 <0.44 F2 <1.1 <2.2 F2 <0.84 F2 <2.84 F2 <2.9 F2 <0.29 F2 <0.43 F2 <1.3 <0.79 <0.59 F2 <0.44 F2 <0.47 F2 	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76 23 <0.26 <0.26 <0.39 <1.2 <0.72 <0.53 <0.40 <0.43	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 * 10 J,B <0.21 <0.21 <0.32 * <0.94 <0.59 <0.44 <0.33 <0.85	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61 <5.4 <0.21 <0.21 <0.21 <0.21 <0.58 <0.43 <0.32 <0.43 <0.32 <0.43 <0.43 <0.43 <0.44	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64 <5.7 <0.22 <0.22 <0.33 * <0.97 <0.61 <0.45 <0.33 <0.36	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69 16 J <0.24 <0.24 <0.24 <0.65 <0.48 <0.36 <0.39	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67 <5.9 <0.23 <0.23 <0.34 <1.0 <0.63 <0.46 <0.35 <0.37	 <0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.96 <1.9 <0.74 <6.6 <0.25 F2 <0.37 * <1.1 <0.70 <0.52 F2 <0.38 F2 	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71 74 <0.24 <0.24 <0.36 <1.1 <0.67 <0.49 <0.37 <0.40	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72 31 <0.25 <0.25 <0.36 <1.1 <0.68 <0.50 <0.37 <0.93	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81 7.9 J <0.28 <0.28 <0.41 <1.2 <0.76 <0.56 <0.42 <0.45	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67 27 <0.23 <0.23 <0.34 * <1.0 <0.63 <0.47 <0.35 <0.38	<0.41 <0.38 * <0.54 * <0.37 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 * <6.2 <0.24 <0.24 <0.35 * <1.0 <0.66 <0.49 <0.36 * <0.49 <0.36 * <0.49 <0.36 * <0.39 *	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane (chlorodibromomethane)	82,000 810 1,900 66,000 13,000 180 820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180 17,000 2,200	700,000 2,000 4,300 4,300 470,000 91,000 1,600 1,800 1,800 1,800 1,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100 120,000 5,400	4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000 1,000	46 4,000 6 58 7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000	ug/kg	 <0.50 F2 <0.46 F2 <0.66 F2 <1.9 <1.7 F2 <1.0 F2 <0.44 F2 <1.1 <2.2 F2 <0.84 F2 <1.1 <2.2 F2 <0.84 F2 <1.3 <1.3 <0.79 <0.44 F2 	<0.45 <0.42 <0.60 <0.41 <1.7 <1.5 <0.91 <0.40 <1.0 <2.0 <0.76 23 <0.26 <0.26 <0.39 <1.2 <0.72 <0.53 <0.40	<0.37 <0.34 * <0.49 <0.33 <1.4 <1.2 * <0.74 <0.33 <0.81 <1.6 * <0.62 * 10 J,B <0.21 <0.32 * <0.94 <0.59 <0.44 <0.33	<0.36 <0.34 * <0.48 <0.33 <1.3 <1.2 * <0.73 <0.32 <0.80 <1.6 <0.61 <5.4 <0.21 <0.21 <0.21 <0.92 <0.58 <0.43 <0.32	<0.38 <0.35 * <0.50 <0.34 <1.4 <1.3 * <0.77 <0.33 <0.84 <1.7 <0.64 <5.7 <0.22 <0.22 <0.33 * <0.97 <0.61 <0.45 <0.33	<0.41 <0.38 * <0.54 <0.37 <1.5 <1.4 * <0.82 <0.36 <0.90 <1.8 <0.69 16 J <0.24 <0.24 <0.35 * <1.0 <0.65 <0.48 <0.36	<0.39 <0.36 <0.52 <0.36 <1.5 <1.3 <0.79 <0.35 <0.87 <1.7 <0.67 <5.9 <0.23 <0.23 <0.34 <1.0 <0.63 <0.46 <0.35	 <0.44 F2 <0.41 * <0.58 <0.40 <1.6 <1.5 * <0.88 <0.96 <1.9 <0.74 <6.6 <0.25 F2 <0.37 * <1.1 <0.70 <0.52 F2 <0.38 F2 	<0.42 <0.39 <0.55 <0.38 <1.6 <1.4 <0.84 <0.37 <0.92 3.5 J <0.71 74 <0.24 <0.24 <0.36 <1.1 <0.67 <0.49 <0.37	<0.42 <0.39 <0.56 <0.38 <1.6 <1.4 <0.86 <0.37 <0.93 <1.9 <0.72 31 <0.25 <0.25 <0.36 <1.1 <0.68 <0.50 <0.37	<0.48 <0.44 <0.63 <0.43 <1.8 <1.6 <0.96 <0.42 <1.0 <2.1 <0.81 7.9 J <0.28 <0.28 <0.41 <1.2 <0.76 <0.56 <0.42	<0.39 <0.37 * <0.52 <0.36 <1.5 <1.3 * <0.80 <0.35 <0.87 <1.8 <0.67 27 <0.23 <0.23 <0.24 * <1.0 <0.63 <0.47 <0.35	<0.41 <0.38 * <0.54 * <0.57 <1.5 <1.4 * <0.83 <0.36 <0.90 <1.8 <0.69 * <6.2 <0.24 <0.24 <0.35 * <1.0 <0.66 <0.49 <0.36 *	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 2 of 5

					Sample Id ¹	2015.08.18 F7.5	2015.08.18 DUP#04 (F7.5)	2015.08.17 G1	2015.08.17 G3	2015.08.17 G5	2015.08.17 DUP#01 (G5)	2015.08.18 H2	2015.08.17 H4	2015.08.17 II	2015.08.17 DUP#02 (I1)	2015.08.18 I3	2015.08.17 15	2015.08.17 K1	Analytical Method
Analyte					Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	
cis-1,2-Dichloroethene	4,800	34,000	490	490	ug/kg	<0.69 F2	<0.63	<0.51	<0.50	<0.53	<0.57	<0.55	<0.61	<0.58	<0.59	<0.66	<0.55	<0.57	8260C
Ethyl benzene	160,000	230,000	19,000	19,000	ug/kg	<0.35	<0.31	<0.26	<0.25	< 0.26	<0.28	< 0.27	<0.30 F2	<0.29	<0.29	<0.33	<0.28	<0.29 *	8260C
Hexachlorobutadiene	820	8,600	5,500	5,500	ug/kg	<0.78	<0.71	<0.58 *	<0.57 *	<0.60 *	<0.64 *	<0.62	<0.69 F2, *	<0.66	<0.67	<0.75	<0.62 *	<0.65 *	8260C
Isobutylalcohol	730,000	6,200,000	30,000	30,000	ug/kg	<29 F2	<27	<22	<21	<22	<24	<23	<26	<25	<25	<28	<23	<24	8260C
Methyl tert-butyl ether (MTBE)	650,000	4,700,000	77	77	ug/kg	<0.55 F2	<0.50	<0.41	<0.40	<0.42	<0.45	<0.44	<0.49	<0.46	<0.47	<0.53	< 0.44	< 0.46	8260C
Methylene Chloride	19,000	44,000	17	17	ug/kg	<1.8 F2	<1,7	<1.4	<1.3	<1.4	<1.5	<1.4	<1.6	<1.5	<1.6	<1.7	<1.5	<1.5	8260C
Styrene	500,000	1,700,000	11,000	11,000	ug/kg	< 0.40	<0.37	<0.30	<0.29	<0.31	<0.33	<0.32	<0.35	<0.34	<0.34	<0.39	<0.32	<0.33 *	8260C
Tetrachloroethene (tetrachloroethylene)	8,300	35,000	180	180	ug/kg	<0.37	< 0.34	<0.27	<0.27	<0.28	<0.30	<0.29	<0.32 F2	<0.31	< 0.31	<0.35	<0.29	<0.30 *	8260C
Toluene	68,000	470,000	20,000	20,000	ug/kg	<0.81	<0.73	< 0.60	<0.59	<0.62	<0.66	< 0.64	<0.71 F2	<0.68	< 0.69	<0.77	<0.64	<0.67 *	8260C
trans-1,2-Dichloroethene	6,900	48,000	770	770	ug/kg	<1.1	<0.98	< 0.80	<0.79	< 0.83	< 0.89	< 0.86	<0.95	<0.91	<0.92	<1.0	<0.86	<0.89	8260C
Trichloroethene	100	210	73	73	ug/kg	<0.45 F2	< 0.41	<0.33	<0.33	< 0.34	< 0.37	< 0.36	<0.40 F2	<0.38	<0.38	<0.43	<0.36	<0.37	8260C
Trichlorofluoromethane	38,000	260,000	37,000	37,000	ug/kg	<0.58 F2	< 0.52	<0.43	<0.42	< 0.44	<0.47	<0.46	<0.51	<0.48	<0.49	<0.55	<0.46	<0.48	8260C
Vinyl Chloride	240	790	13	13	ug/kg	<0.50 F2	< 0.45	<0.37	<0.36	<0.38	<0.41	<0.39	<0.44	<0.42	<0.42	<0.48	<0.39	<0.41	8260C
Xylenes (total)	18,000	120,000	150,000	120,000	ug/kg	<0.98 F2	< 0.89	2.2 J	<0.71	<0.75	< 0.80	<0.77	0.92 J, F2	<0.82	<0.84	<0.94	<0.78	<0.81 *	8260C
Semivolatile Organic Compounds											2000	3177	0.52 0,12	-0.02	50,01	40,54	NO.70	NO.01	0200C
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³	1														
1,1 Biphenyl	230,000	230,000	190,000	190,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	05	1 00 1	Lau	92700
1,2,4,5-Tetrachlorobenzene	1,200	12,000	6,900	6,900	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42			<35	<38	<41	8270D
1.2.4-Trichlorobenzene	66,000	1,200,000	14,000	14,000	ug/kg	<36 F1	<36	<39	<39	<37		<37		<37	<39	<35	<38	<41	8270D
1,2-Dichlorobenzene	99,000	380,000	29,000	29,000	ug/kg	<36	<36	<39	<39	<37	<41		<42	<37	<39	<35	<38	<41	8270D
1,3-Dichlorobenzene	2,100	18,000	2,100	2,100	ug/kg	<36	<36	<39			<41	<37	<42	<37	<39	<35	<38	<41	8270D
1,3-Dinitrobenzene	450	5,000	250	250	-	<36			<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
1.4-Dichlorobenzene	6,700	16,000	5,700	5,700	ug/kg ug/kg	<36	<36 <36	<39 <39	<39 <39	<37 <37	<41	<37	<42	⊲7	<39	<35	<38	<41	8270D
2,3,4,6-Tetrachlorophenol	140,000	1,400,000	31,000	31,000	1	<36	<36				<41	<37	<42	<37	<39	<35	<38	<41	8270D
2,4,5-Trichlorophenol	530,000	6,600,000	320,000	320,000	ug/kg			<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
2,4,6-Trichlorophenol	40,000	170,000	1,300	1,300	ug/kg	36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
2,4-Dichlorophenol	16,000	200,000	-		ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
2,4-Dimethylphenol			12,000	12,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
2,4-Dinitrophenol	93,000 7.100	1,100,000	20,000	20,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
2,4-Dinitrotoluene	8,900	69,000	1,700	1,700	ug/kg	<360 *	<360 *	<390 *	<390 *	<360 *	<410 *	<370 *	<420 *	<370	<390	<350 *	<380	<410	8270D
2,6-Dinitrotoluene		98,000	1,000	1,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
2-Chloronaphthalene	4,300	46,000	390	390	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
2-Chlorophenol	500,000	8,300,000	500,000	500,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
2-Methylnaphthalene	15,000	140,000	1,400	1,400	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
	22,000	170,000	1,700	1,700	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
2-Nitroaniline	1,700	1,700	1,700	1,700	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
3,3-Dichlorobenzidine	970	4,200	1,800	1,800	ug/kg	<360	<360	<390	<390	<360	<410	<370	<420	<370	<390	<350	<380	<410	8270D
3-Nitroaniline	13,000	140,000	1,700	1,700	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
4-Nitroaniline	10,000	100,000	1,700	1,700	ug/kg	<360	<360	<390	<390	<360	<410	<370	<420	<370	<390	<350	<380	<410	8270D
4-Nitrophenol	32,000	330,000	2,600	2,600	ug/kg	<360	<360	<390	<390	<360	<410	<370	<420	<370	<390	<350	<380	<410	8270D
Acenaphthene	370,000	6,100,000	220,000	220,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
Acenaphthylene	350,000	5,100,000	88,000	88,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
Aniline	2,400	17,000	65	65	ug/kg	<65	<65	<70	<70	<66	<74	<66	<76	<67	<70	<63	<69	<74	8270D
Anthracene	2,200,000	48,000,000	120,000	120,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
Benz(a)anthracene	620	2,900	330,000	2,900	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
	330	330	23,000	330	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	<41	8270D
Benzo(a)pyrene Benzo(b)fluoranthene	620	2,900	220,000	2,900	0.0					0,	-12	01	.72	57	07	-03	V0.	741	02/02

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 3 of 5

				Sample Id ¹	2015.08.18 F7.5	2015.08.18 DUP#04 (F7.5)	2015.08.17 G1	2015.08.17 G3	2015.08.17 G5	2015.08.17 DUP#01 (G5)	2015.08.18 H2	2015.08.17 H4	2015.08.17 I1	2015.08.17 DUP#02 (I1)	2015.08.18 13			2015.08.17 K1	Analytical Method
			3	Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result	Qual I	Result Qua	al
6,200	29,000	120,000	29,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42 F1	<37	-				<41	8270D
4,900	17,000	800	800	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37			-			8270D
330	1,100	330	330	ug/kg	<36	<36	<39	<39	<37	<42	<37	<42	<37			-		_	8270D
35,000	170,000	79,000	79,000	ug/kg	<49	<49	<53	<53	<50	<56	<50	<57	130 J,B		<48				
220,000	220,000	220,000	220,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37						8270D
62,000	290,000	76,000	76,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37			1	_		8270D
330	330	540,000	330	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39					8270D
29,000	150,000	24,000	24,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37			1		_	8270D
670,000	670,000	360,000	360,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42							8270D
1,500,000	1,500,000	1,500,000	1,500,000			<36			<37	<41								_	8270D
240,000	3,500,000	10,000,000	3,500,000	ug/kg	<36	<36	<39	<39			<37								8270D
220,000	2,900,000	1,200,000	1,200,000		<36	<36	<39	<39	<37	<41	<37		<37					_	8270D
280,000	5,400,000	230,000	230,000		<36	<36	<39	<39		<41	<37			-					8270D
340	2,000	9,600				1					-							_	8270D
820	8,600	5,500				-													8270D
1,400		1.200,000	-			1										-	_		8270D
5,200	68,000					1									-	1			8270D
		-				-					-				-				8270D
																			8270D
						-										-			8270D
																	_		8270D
	-										-						_		8270D
							_					-				-		_	8270D
																-	_		8270D
																			8270D
																	_	_	8270D
						-											_		8270D 8270D
Residential Soil			Screening Level ²	ugrag	30	1 00	- W	- W	St.	V41.	3/	\42	31	\ \frac{1}{2}	\35	\J6		V41]	82/00
630,000	8,200	0,000	8,200,000	ug/kg	<36	<36	<39	<39	<37	<41	<37	<42	<37	<39	<35	<38	1 2	<41	8270D
160,000	2,100	0,000	2,100,000			-				-	-						_	_	8270D
				1 -0-0		1 1			V	1		1.12	01	- 57	03.1	50		V41	82701
SSni	SSi	SSGW	Screening Level ³																
12	12	100	12	mg/kg	NA	NA	NA I	NA	NA	NA.	25 1	I NA I	NA	I NA I	NA	NA I	- 1	NA.	6020A
																			6020A
3.9	100													_		1	_		6020A
23																			6020A
						-										_	_		6020A
				1												-	_		
				-										-					7471B
39	1,000	100	100	mg/kg		NA NA	NA NA	NA NA	NA NA	NA NA	<0.063	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	6020A 6020A
	4,900 330 35,000 220,000 62,000 330 29,000 670,000 1,500,000 240,000 220,000 280,000 340 820 1,400 5,200 620 340,000 6,200 2,200 330 2,800 2,100,000 1,300,000 1,300,000 1,300,000 1,300,000 Sesidential Soil 630,000 160,000 SSni 12 550 3.9 23 400 2,3 39	4,900	4,900 17,000 800 330 1,100 330 35,000 170,000 79,000 220,000 220,000 220,000 62,000 290,000 76,000 330 330 540,000 29,000 150,000 24,000 670,000 670,000 360,000 1,500,000 1,500,000 1,500,000 240,000 3,500,000 10,000,000 240,000 3,500,000 10,000,000 280,000 5,400,000 230,000 340 2,000 9,600 820 8,600 5,500 1,400 9,400 1,200,000 5,200 68,000 2,200 620 2,900 9,200 340,000 1,100,000 560 6,200 43,000 1,500 2,200 25,000 330 330 330 330 330,000 1,700 2,100,000 1,100,000	4,900	G,200 29,000 120,000 29,000 ug/kg	Color			Sample Sample Color Co	Sample Color Col		Sample Abs. Abs.	State Proceedings State Process State Process State Process State Process State Process Pr	1	Sample March Mar	March Marc		Second Price Pri	Section Column Column

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 4 of 5

					Sample Id ¹	2015.08.18 F7.5	2015.08.18 DUP#04 (F7.5)	2015.08.17 G1	2015.08.17 G3	2015.08.17 G5	2015.08.17 DUP#01 (G5)	2015.08.18 H2	2015.08.17 H4	2015.08.17 I1	2015.08.17 DUP#02 (II)	2015.08.18 I3	2015.08.17 I5	2015.08.17 K1	Analytical Method
Analyte					Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Oual	Result Qual	Result Oual	Result Qual	
Dioxins and Furans																1	- Cam	Anna Cam	
Regional Screening Level Summary Table ⁴	Residential Soil	Industr	rial Soil	Screening Level ⁴															
2,3,7,8-TCDD	4.9	2	22	22	pg/g	NA	NA	NA	NA	NA	NA	< 0.034	NA	NA	NA	NA	NA	NA NA	1613B
2,3,7,8-TetraCDF	NP	N	IP .	NP	pg/g	NA	NA	NA	NA	NA	NA	< 0.029	NA	NA	NA	NA	NA	NA	1613B
1,2,3,7,8-PentaCDD	NP	N	IP.	NP	pg/g	NA	NA	NA	NA	NA	NA.	< 0.059	NA	NA	NA	NA	NA	NA	1613B
1,2,3,7,8-PentaCDF	NP	N	IP.	NP	pg/g	NA	NA	NA	NA	NA	NA	< 0.041	NA	NA	NA	NA	NA	NA	1613B
2,3,4,7,8-PentaCDF	NP	N	IP.	NP	pg/g	NA	NA	NA	NA	NA	NA	<0.048	NA	NA	NA	NA	NA	NA NA	1613B
1,2,3,4,7,8-HexaCDD	NP	N	NP.	NP	pg/g	NA	NA	NA	NA	NA	NA	0.081 J	NA	NA	NA	NA NA	NA NA	NA NA	1613B
1,2,3,6,7,8-HexaCDD	NP	N	IP .	NP	pg/g	NA	NA	NA	NA	NA	NA	0.13 J	NA	NA	NA	NA NA	NA	NA NA	1613B
1,2,3,7,8,9-HexaCDD	NP	N	IP.	NP	pg/g	NA	NA	NA	NA	NA	NA	0.22 J, q	NA	NA	NA	NA	NA NA	NA NA	1613B
1,2,3,4,7,8-HexaCDF	NP	N	NP .	NP	pg/g	NA	NA	NA	NA	NA	NA	0.072 J	NA	NA	NA	NA NA	NA NA	NA NA	1613B
1,2,3,6,7,8-HexaCDF	NP		IP .	NP	pg/g	NA	NA	NA	NA	NA	NA	0.061 J	NA	NA NA	NA NA	NA NA	NA NA	NA NA	1613B
1,2,3,7,8,9-HexaCDF	NP	N	NP .	NP	pg/g	NA	NA	NA	NA	NA	NA	0.049 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1613B
2,3,4,6,7,8-HexaCDF	NP	N	IP .	NP	pg/g	NA	NA	NA	NA	NA	NA	0.074 J, q	NA	NA NA	NA NA	NA NA	NA NA	NA NA	1613B
1,2,3,4,6,7,8-HeptaCDD	NP	N	IP.	NP	pg/g	NA	NA	NA	NA	NA	NA NA	3.2 J, B	NA.	NA	NA NA	NA NA	NA NA	NA NA	1613B
1,2,3,4,6,7,8-HeptaCDF	NP	N	IP.	NP	pg/g	NA	NA	NA	NA	NA	NA	0.25 J, B	NA	NA	NA	NA NA	NA NA	NA NA	1613B
1,2,3,4,7,8,9-HeptaCDF	NP		IP .	NP	pg/g	NA	NA	NA	NA	NA	NA	< 0.064	NA	NA NA	NA	NA NA	NA NA	NA NA	1613B
OctaCDD	NP		IP .	NP	pg/g	NA	NA	NA	NA	NA	NA	210 B	NA	NA	NA	NA NA	NA NA	NA NA	1613B
OctaCDF	NP		IP	NP	pg/g	NA	NA	NA	NA	NA	NA	0.57 J, B	NA	NA	NA	NA NA	NA NA	NA NA	1613B
General Chemistry					1 100							0.01 0,0	2.12	101	141	IMA	IVI	INA	10130
Regional Screening Level Summary Table ²	Residential Soil	Industr	rial Soil	Screening Level ²															
Nitrocellulose	19,000,000	250,00	00 000	250,000,000	mg/kg	NA.	NA	NA	NA	NA	NA	<0.86 F1	NA	NA	L MA	I NA	1 374 1	Lari	252 2 377
Diesel Range Organics	17,000,000	200,00		220,000,000	III III JAG	Tur.	IVA	IVA	IM	INA	NA	V0.00 F1	NA	NA	NA	NA	NA	NA	353.2_Nitrocel
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³															
Diesel Range Organics [C10-C28]	65	510	65	65	mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8015B DRO
Gasoline Range Organics					11 -00						1.11.	101	101	101	IVI	NA	IVA	NA	ONIO_DIKO
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³															
Gasoline Range Organics [C6-C12]	65	510	65	65	mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	8015B GRO

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 5 of 5

	Sample Id ¹	2015.08.18 F7.5	2015.08.18 DUP#04 (F7.5)	2015.08.17 G1	2015.08.17 G3	2015.08.17 G5	2015.08.17 DUP#01 (G5)	2015.08.18 H2	2015.08.17 H4	2015.08.17 I1	2015.08.17 DUP#02 (II)	2015.08.18 I3	2015.08.17 I5	2015.08.17 K1	Analytical Method
Analyte	Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	

Concentrations in red bold indicate the result exceeds the Screening Level.

Abbreviations:

<= Not detected at the reporting limit (or MDL or EDL if shown)

Qual = Qualifer

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

F2= MS/MSD RPD exceeds control limits

F1= MS and/or MSD Recovery is outside acceptance limits

B= Compound was found in the blank and sample

q= the reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

*=LCS or LCSD is outside acceptance limits

ug/kg = micrograms per killograms

mg/kg = milligrams per killograms

pg/g = picogram per gram

RECAP = Risk Evaluation/Corrective Action Program

SSni = Soil Screening non-industrial

SSi = Soil Screening industrial

SSGW = Soil Screening protective of groundwater

NA = Not Analyzed

NP = Not Published

¹ Sample Identification = collection date (year.month.day) predetermined onsite grid location. All Area I surface soil samples were collected from 0-2 feet below ground surface. Four surface soil sample locations (B2.3; E6.5; H2; and O-0.2) were analyzed for additional parameters.

² The United States Environmental Protection Agency (USEPA) Regional Screening Level (RSL) Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for industrial soil was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

³ The most conservative Louisiana Department of Environmental Quality (LDEQ) Risk Evaluation/Corrective Action Program (RECAP) Screening Standard (RSS) (dated October 2003) of the soil for industrial use (SSi) and the soil concentration protective of groundwater (SSGW) was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

The USEPA, RSL Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for industrial soil was determined as the Screening Level for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). The 2005 World Hospital Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors (TEFs) for Dioxins and Dioxin like compounds were used to calculate the total TCDD Toxic Equivalent (TEQ) in each medium. Total TEQs in each medium were compared to the Screening Level for TCDD. Data from the baseline sample event will establish site closeout and site restoration.

⁵ Arsenic was reanalyzed in the surface soil sample location O-0.2. Reported result of Arsenic reanalysis was 3.2 mg/kg. The laboratory noted the sample was non-homogenous and could be the cause of the discrepant results. Concentrations in bold indicate the MDL exceeds the Screening Level.

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 1 of 5

					Sample Id ¹	2015.08.17 K3	2015.08.17 K5	2015.08.18 L4	2015.08.17 M1	2015.08.18 M3	2015.08.18 M5	2015.08.18 N2	2015.08.18 O-0.2	2015.08.18 DUP#03 (O-0.2)	2015.08.18 P-0.7	2015.08.18 P-0.4	2015.08.18 P-0.2	2015.08.18 Q-0.4	Analytical Method
Analyte					Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Oual	Result Qual	Result Qual	
Nitroaromatics and Nitramines																	The state of the s	1	
Regional Screening Level Summary Table ²	Residential Soil	Industri	al Soil	Screening Level ²															
1,3,5-Trinitrobenzene	220,000	3,200,	,000	3,200,000	ug/kg	<27	<25	<24	<26	<25	<26	<27	<27	<27	<27	<27	<27	<27	8330B
1,3-Dinitrobenzene	630	8,20	00	8,200	ug/kg	<43	<40	<39	<41	<40	<41	<43	<43	<43	<43	<42	<43	<43	8330B
2,4,6-Trinitrotoluene	3,600	51,0	00	51,000	ug/kg	<35	<33	<32	<34	<33	<34	<35	<36	<36	<35	<35	<35	<36	8330B
2,4-Dinitrotoluene	1,700	7,40	00	7,400	ug/kg	<37	<35	<34	<36	<35	<36	<37	<38	<38	<37	<37	<37	<38	8330B
2,6-Dinitrotoluene	360	1,50	00	1,500	ug/kg	<62	<59	<57	<61	<59	<60	<62	<64	<64	<63	<62	<63	<64	8330B
2-Amino-4,6-dinitrotoluene	15,000	230,0	000	230,000	ug/kg	<42	<40	<38	<41	<40	<40	<42	<43	<43	<43	<42	<43		
4-Amino-2,6-dinitrotoluene	15,000	230,0	000	230,000	ug/kg	<91	<87	<83	<89	<86	<88	<91	<93	<93	<93			<43	8330B
3-Nitrotoluene	630	8,20	00	8,200	ug/kg	<54	<52	<50	<53	<51	<52	<54	<56	<56	<55	<91 <54	<93	<93	8330B
Nitrobenzene	5,100	22,0		22,000	ug/kg	<42	<40	<39	<41	<40	<41	<42	<43	<43	<43		<55	<56	8330B
Nitroglycerin	630	8,20		8,200	ug/kg	<260	<250	<240	<260	<250	<250	<260	<270	<270	<270	<42 <260	<43	<43	8330B
2-Nitrotoluene	3,200	15,0		15,000	ug/kg	<64	<60	<58	<62	<60	<61	<64	<65	<65	<65		<270	<270	8330B
4-Nitrotoluene	25,000	140,0		140,000	ug/kg	<80	<76	<73	<77	<75	<77	<80	<81			<63	<65	<65	8330B
Pentaerythritol Tetranitrate	13,000	160,0		160,000	ug/kg	<340	<320	<310	<330	<320	<320	<340		<81	<81	<79	<81	<81	8330B
RDX	6,100	28,0		28,000	ug/kg	<61	<58	<56	<59	<57	<59		<340	<340	<340	<340	<340	<340	8330B
HMX	390,000	5,700,		5,700,000	ug/kg	<38	<36	<35	<37	<36		<61	<62	<62	<62	<61	<62	<62	8330B
Tetryl	16,000	230,0		230,000	ug/kg ug/kg	<45	<43	<41	<44 F1	<42	<37	<38	<39	<39	<39	<38	<39	<39	8330B
Volatile Organic Compounds	10,000	200,0		250,000	ug/ng	V43	V43	N41	V44 [F]	C42	<43	<45	<46	<46	<46	<45 F2, F1	<46	<46	8330B
RECAP Screening Standards ³ 1.1.1.2-Tetrachloroethane	SSni 2,700	5,900	SSGW	Level ³		Land	Lant	Carel	C										
1.1.1-Trichloroethane	82,000		46	46	ug/kg	<0.32	<0.30	<0.31	<0.33 F2	<0.36	<0.29	<0.34	<0.28	<0.28	<0.30	<0.33	<0.31	<0.31	8260C
1.1.2.2-Tetrachloroethane	82,000	700,000	4,000	4,000	ug/kg	<0.39	<0.37	<0.38	<0.41 F2	<0.44	<0.35	<0.42	<0.35	<0.35	<0.37	<0.40	<0.39	<0.38	8260C
1,1,2-Trichloroethane	1,900	2,000	6	6	ug/kg	<0.37	<0.35	<0.36	<0.38 F2	<0.41	< 0.33	< 0.39	< 0.32	-0.22	< 0.34	-0.27	< 0.36	20 DE	
1,1-Dichloroethane		4,300	58		ug/kg	< 0.52	< 0.49	<0.51						<0.32	V0.34	<0.37	V0.30	<0.35	8260C
1.1-Dichloroethene	66,000	470,000		58					<0.54 F2	<0.59	<0.46	<0.56	<0.46	<0.46	<0.48	<0.53	<0.51	<0.50	8260C 8260C
1,2-Dibromo-3-chloropropane	13,000	91,000	7,500	7,500	ug/kg	<0.36	<0.34	<0.35	<0.37 F2	<0.59 <0.40	<0.46 <0.32	<0.56 <0.38	<0.46 <0.32						
1,2-Dibromo-3-chioropropane			85	7,500 85	ug/kg ug/kg	<0.36 <1.5	<0.34 <1.4	<0.35 <1.4	<0.37 F2 <1.5 F2	<0.59 <0.40 <1.7	<0.46 <0.32 <1.3	<0.56 <0.38 <1.6	<0.46 <0.32 <1.3	<0.46 <0.31 <1.3	<0.48	<0.53	<0.51	<0.50	8260C
	180	1,600	85 10	7,500 85 10	ug/kg ug/kg ug/kg	<0.36 <1.5 <1.3	<0.34 <1.4 <1.3	<0.35 <1.4 <1.3	<0.37 F2 <1.5 F2 <1.4 F2	<0.59 <0.40 <1.7 <1.5	<0.46 <0.32 <1.3 <1.2	<0.56 <0.38 <1.6 <1.4	<0.46 <0.32 <1.3 <1.2	<0.46 <0.31 <1.3 <1.2	<0.48 <0.33 <1.4 <1.2	<0.53 <0.36 <1.5 <1.3	<0.51 <0.35	<0.50 <0.34	8260C 8260C
1,2-Dichloroethane	820	1,600 1,800	85 10 35	7,500 85 10 35	ug/kg ug/kg ug/kg ug/kg	<0.36 <1.5 <1.3 <0.80	<0.34 <1.4 <1.3 <0.75	<0.35 <1.4 <1.3 <0.78	<0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2	<0.59 <0.40 <1.7 <1.5 <0.90	<0.46 <0.32 <1.3 <1.2 <0.71	<0.56 <0.38 <1.6 <1.4 <0.85	<0.46 <0.32 <1.3 <1.2 <0.70	<0.46 <0.31 <1.3	<0.48 <0.33 <1.4 <1.2 <0.74	<0.53 <0.36 <1.5 <1.3 <0.81	<0.51 <0.35 <1.4	<0.50 <0.34 <1.4	8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane	820 690	1,600 1,800 1,800	85 10 35 42	7,500 85 10 35 42	ug/kg ug/kg ug/kg ug/kg ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35	<0.34 <1.4 <1.3 <0.75 <0.33	<0.35 <1.4 <1.3 <0.78 <0.34	<0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.36 F2	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35	<0.51 <0.35 <1.4 <1.3	<0.50 <0.34 <1.4 <1.3	8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total	820 690 3,100	1,600 1,800 1,800 10,000	85 10 35 42 40	7,500 85 10 35 42 40	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85	<0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.36 F2 <0.90	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77	<0.46 <0.31 <1.3 <1.2 <0.70	<0.48 <0.33 <1.4 <1.2 <0.74	<0.53 <0.36 <1.5 <1.3 <0.81	<0.51 <0.35 <1.4 <1.3 <0.78	<0.50 <0.34 <1.4 <1.3 <0.77	8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone)	820 690 3,100 590,000	1,600 1,800 1,800 10,000 4,400,000	85 10 35 42 40 5,000	7,500 85 10 35 42 40 5,000	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24	<0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.36 F2 <0.90 <1.8 F2	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34	8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone)	820 690 3,100 590,000 450,000	1,600 1,800 1,800 10,000 4,400,000 3,100,000	85 10 35 42 40 5,000 6,400	7,500 85 10 35 42 40 5,000 6,400	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.36 F2 <0.90 <1.8 F2 <0.69 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84	8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone	820 690 3,100 590,000 450,000 170,000	1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000	85 10 35 42 40 5,000 6,400 1,500	7,500 85 10 35 42 40 5,000 6,400 1,500	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.36 F2 <0.90 <1.8 F2 <0.69 F2 7.4 J, F1 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59 <5.2	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J <0.62 45	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8 <0.68 <6.0	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene	820 690 3,100 590,000 450,000 170,000 1,500	1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100	85 10 35 42 40 5,000 6,400 1,500 51	7,500 85 10 35 42 40 5,000 6,400 1,500 51	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9 <0.23	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6 <0.22	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150 0.69 J	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.36 F2 <0.90 <1.8 F2 <0.69 F2 7.4 J, F1 <0.24 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7 <0.26	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45 <0.20	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J <0.24	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2 <0.20	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J <0.62 45 <0.21	<0.53 <0.36 <1.5 <1.3 <0.81 <0.85 <1.8 <0.68	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7 <0.65	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J <0.64	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane	820 690 3,100 590,000 450,000 170,000 1,500 1,800	1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200	85 10 35 42 40 5,000 6,400 1,500 51 920	7,500 85 10 35 42 40 5,000 6,400 1,500 51 920	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9 <0.23 <0.23	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6 <0.22	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150 0.69 J <0.22	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.36 F2 <0.90 <1.8 F2 <0.69 F2 7.4 J, F1 <0.24 F2 <0.24 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7 <0.26 <0.26	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45 <0.20 <0.20	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J <0.24 <0.24	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2 <0.20 <0.20	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59 <5.2 <0.20 <0.20	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J <0.62 45 <0.21 <0.21	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8 <0.68 <6.0 <0.23 <0.23	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7 <0.65 <5.8	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J <0.64 51	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform	820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000	1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000	85 10 35 42 40 5,000 6,400 1,500 51 920 1,800	7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9 <0.23 <0.23 <0.34	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6 <0.22 <0.22 <0.32	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150 0.69 J <0.22 <0.33	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.36 F2 <0.90 <1.8 F2 <0.69 F2 7.4 J, F1 <0.24 F2 <0.24 F2 <0.35 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7 <0.26 <0.26 <0.38	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45 <0.20 <0.20 <0.30	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J <0.24 <0.24 <0.36	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2 <0.20 <0.20 <0.30	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59 <5.2 <0.20 <0.20 <0.30	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J <0.62 45 <0.21 <0.21 <0.31	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8 <0.68 <6.0 <0.23	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J <0.64 51 <0.22	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane	820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430	1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000	85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40	7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9 <0.23 <0.23 <0.34 <1.0	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6 <0.22 <0.22 <0.32 <0.95	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150 0.69 J <0.22 <0.33 <0.98	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.36 F2 <0.90 <1.8 F2 <0.69 F2 7.4 J, F1 <0.24 F2 <0.24 F2 <0.35 F2 <1.0 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7 <0.26 <0.26 <0.38 <1.1	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45 <0.20 <0.20 <0.30 <0.90	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J <0.24 <0.24 <0.36 <1.1	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2 <0.20 <0.20 <0.30 <0.89	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59 <5.2 <0.20 <0.20 <0.30 <0.89	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 <4.5 J <0.62 <45 <0.21 <0.21 <0.31 <0.94	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8 <0.68 <6.0 <0.23 <0.23	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J <0.64 51 <0.22 <0.22	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide	820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000	1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000	85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000	7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9 <0.23 <0.23 <0.34 <1.0 <0.63	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6 <0.22 <0.22 <0.32 <0.95 <0.60	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150 0.69 J <0.22 <0.33 <0.98 <0.61	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.36 F2 <0.90 <1.8 F2 <0.69 F2 7.4 J, F1 <0.24 F2 <0.35 F2 <1.0 F2 <0.66 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7 <0.26 <0.26 <0.38 <1.1 <0.71	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45 <0.20 <0.20 <0.30 <0.90 <0.56	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J <0.24 <0.24 <0.36 <1.1 <0.67	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2 <0.20 <0.20 <0.30	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59 <5.2 <0.20 <0.20 <0.30	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J <0.62 45 <0.21 <0.21 <0.31	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8 <0.68 <6.0 <0.23 <0.23 <0.34	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J <0.64 51 <0.22 <0.22 <0.33	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride	820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180	1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100	85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110	7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9 <0.23 <0.23 <0.24 <1.0 <0.63 <0.47	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6 <0.22 <0.32 <0.95 <0.60 <0.44	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150 0.69 J <0.22 <0.33 <0.98 <0.61 <0.45	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.90 F2 <1.8 F2 <0.69 F2 7.4 J, F1 <0.24 F2 <0.35 F2 <1.0 F2 <0.66 F2 <0.49 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7 <0.26 <0.26 <0.38 <1.1 <0.71 <0.53	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45 <0.20 <0.20 <0.30 <0.90 <0.56 <0.42	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J <0.24 <0.24 <0.36 <1.1 <0.67 <0.50	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2 <0.20 <0.20 <0.30 <0.89	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59 <5.2 <0.20 <0.20 <0.30 <0.89	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J <0.62 45 <0.21 <0.21 <0.31 <0.94 <0.59 <0.43	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8 <0.68 <6.0 <0.23 <0.23 <0.34 <1.0	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 <0.99	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J <0.64 51 <0.22 <0.22 <0.33 <0.97	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene	820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180 17,000	1,600 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100 120,000	85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000	7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9 <0.23 <0.23 <0.23 <0.34 <1.0 <0.63 <0.47 <0.35	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6 <0.22 <0.22 <0.32 <0.95 <0.60 <0.44 <0.33	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150 0.69 J <0.22 <0.33 <0.98 <0.61 <0.45 <0.34	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.90 F2 <1.8 F2 <0.69 F2 7.4 J, F1 <0.24 F2 <0.35 F2 <1.0 F2 <0.66 F2 <0.49 F2 <0.66 F2 <0.36 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7 <0.26 <0.26 <0.38 <1.1 <0.71 <0.53 <0.39	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45 <0.20 <0.20 <0.30 <0.90 <0.56 <0.42 <0.31	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J <0.24 <0.24 <0.36 <1.1 <0.67	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2 <0.20 <0.20 <0.30 <0.89 <0.56	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59 <5.2 <0.20 <0.20 <0.30 <0.89 <0.56	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J <0.62 45 <0.21 <0.21 <0.31 <0.94 <0.59	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8 <0.68 <6.0 <0.23 <0.23 <0.34 <1.0 <0.64	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 <0.99 <0.62	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J <0.64 51 <0.22 <0.22 <0.33 <0.97 <0.61	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane (chlorodibromomethane)	820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180 17,000 2,200	1,600 1,800 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100 120,000 5,400	85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000 1,000	7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000 1,000	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9 <0.23 <0.23 <0.24 <1.0 <0.63 <0.47 <0.35 <0.37	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6 <0.22 <0.22 <0.22 <0.33 <0.85 <0.85 <0.25 <0.25 <0.35 <0.35 <0.35	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150 0.69 J <0.22 <0.33 <0.98 <0.61 <0.45 <0.34 <0.37	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.90 F2 <1.8 F2 <0.69 F2 7.4 J, F1 <0.24 F2 <0.24 F2 <0.66 F2 <0.66 F2 <0.49 F2 <0.35 F2 <0.66 F2 <0.49 F2 <0.36 F2 <0.39 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7 <0.26 <0.26 <0.38 <1.1 <0.71 <0.53 <0.39 <0.42	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45 <0.20 <0.20 <0.20 <0.30 <0.90 <0.56 <0.42 <0.31 <0.33	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J <0.24 <0.24 <0.26 <0.36 <1.1 <0.67 <0.50 <0.37 <0.40	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2 <0.20 <0.20 <0.30 <0.89 <0.56 <0.41	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59 <5.2 <0.20 <0.20 <0.30 <0.89 <0.56 <0.41	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J <0.62 45 <0.21 <0.21 <0.31 <0.94 <0.59 <0.43	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8 <0.68 <6.0 <0.23 <0.23 <0.34 <1.0 <0.64 <0.47	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.33 <0.99 <0.62 <0.46	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J <0.64 51 <0.22 <0.22 <0.33 <0.97 <0.61 <0.45	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane (chlorodibromomethane) Chloroethane	820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180 17,000 2,200 4,100	1,600 1,800 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100 120,000 5,400 8,200	85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000 1,000 35	7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000 1,000 35	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9 <0.23 <0.23 <0.23 <0.34 <1.0 <0.63 <0.47 <0.35 <0.37 <0.48	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6 <0.22 <0.22 <0.22 <0.32 <0.95 <0.60 <0.44 <0.33 <0.35 <0.45	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150 0.69 J <0.22 <0.33 <0.98 <0.61 <0.45 <0.34 <0.37 <0.46	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.90 F2 <1.8 F2 <0.69 F2 7.4 J, F1 <0.24 F2 <0.35 F2 <1.0 F2 <0.66 F2 <0.49 F2 <0.66 F2 <0.36 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7 <0.26 <0.26 <0.38 <1.1 <0.71 <0.53 <0.39	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45 <0.20 <0.20 <0.30 <0.90 <0.56 <0.42 <0.31	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J <0.24 <0.24 <0.36 <1.1 <0.67 <0.50 <0.37	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2 <0.20 <0.30 <0.89 <0.56 <0.41 <0.31	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59 <5.2 <0.20 <0.20 <0.30 <0.89 <0.56 <0.41 <0.31	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J <0.62 45 <0.21 <0.21 <0.31 <0.94 <0.59 <0.43 <0.32	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8 <0.68 <6.0 <0.23 <0.23 <0.34 <1.0 <0.64 <0.47 <0.35	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.22 <0.33 <0.99 <0.62 <0.46 <0.34	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J <0.64 51 <0.22 <0.22 <0.33 <0.97 <0.61 <0.45 <0.34	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane (chlorodibromomethane)	820 690 3,100 590,000 450,000 170,000 1,500 1,800 48,000 430 36,000 180 17,000 2,200	1,600 1,800 1,800 1,800 10,000 4,400,000 3,100,000 1,400,000 3,100 4,200 180,000 3,000 250,000 1,100 120,000 5,400	85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000 1,000	7,500 85 10 35 42 40 5,000 6,400 1,500 51 920 1,800 40 11,000 110 3,000 1,000	ug/kg	<0.36 <1.5 <1.3 <0.80 <0.35 <0.87 <1.8 <0.67 <5.9 <0.23 <0.23 <0.24 <1.0 <0.63 <0.47 <0.35 <0.37	<0.34 <1.4 <1.3 <0.75 <0.33 <0.82 <1.7 <0.63 <5.6 <0.22 <0.22 <0.22 <0.33 <0.85 <0.85 <0.25 <0.25 <0.35 <0.35 <0.35	<0.35 <1.4 <1.3 <0.78 <0.34 <0.85 24 <0.65 150 0.69 J <0.22 <0.33 <0.98 <0.61 <0.45 <0.34 <0.37	 <0.37 F2 <1.5 F2 <1.4 F2 <0.83 F2 <0.90 F2 <1.8 F2 <0.69 F2 7.4 J, F1 <0.24 F2 <0.24 F2 <0.66 F2 <0.66 F2 <0.49 F2 <0.35 F2 <0.66 F2 <0.49 F2 <0.36 F2 <0.39 F2 	<0.59 <0.40 <1.7 <1.5 <0.90 <0.39 <0.98 <2.0 <0.75 <6.7 <0.26 <0.26 <0.38 <1.1 <0.71 <0.53 <0.39 <0.42	<0.46 <0.32 <1.3 <1.2 <0.71 <0.31 <0.77 2.8 J <0.60 45 <0.20 <0.20 <0.30 <0.90 <0.56 <0.42 <0.31 <0.33	<0.56 <0.38 <1.6 <1.4 <0.85 <0.37 <0.93 <1.9 <0.71 7.4 J <0.24 <0.24 <0.26 <0.36 <1.1 <0.67 <0.50 <0.37 <0.40	<0.46 <0.32 <1.3 <1.2 <0.70 <0.31 <0.77 <1.6 <0.59 <5.2 <0.20 <0.20 <0.30 <0.89 <0.56 <0.41 <0.31 <0.33	<0.46 <0.31 <1.3 <1.2 <0.70 <0.31 <0.77 <1.5 <0.59 <5.2 <0.20 <0.20 <0.89 <0.56 <0.41 <0.31 <0.33	<0.48 <0.33 <1.4 <1.2 <0.74 <0.32 <0.81 4.5 J <0.62 45 <0.21 <0.21 <0.31 <0.94 <0.59 <0.43 <0.32 <0.35	<0.53 <0.36 <1.5 <1.3 <0.81 <0.35 <0.88 <1.8 <0.68 <6.0 <0.23 <0.23 <0.34 <1.0 <0.64 <0.47 <0.35 <0.38	<0.51 <0.35 <1.4 <1.3 <0.78 <0.34 <0.85 <1.7 <0.65 <5.8 <0.22 <0.22 <0.22 <0.33 <0.99 <0.62 <0.46 <0.34 <0.37	<0.50 <0.34 <1.4 <1.3 <0.77 <0.34 <0.84 5.4 J <0.64 51 <0.22 <0.22 <0.33 <0.97 <0.61 <0.45 <0.34 <0.36	8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C 8260C

Table 1
Area I Surface Soil Data Summary
Baseline Sample Event
M6 Destruction Project
Camp Minden National Guard Training Site
Minden, Louisiana
Page 2 of 5

Analysis					Sample Id ¹	2015.08.17 K3	2015.08.17 K5	2015.08.18 L4	2015.08.17 M1	2015.08.18 M3	2015.08.18 M5	2015.08.18 N2	2015.08.18 O-0.2	2015.08.18 DUP#03 (O-0.2)	2015.08.18 P-0.7	2015.08.18 P-0.4	2015.08.18 P-0.2	2015.08.18 Q-0.4	Analytical Method
Analyte	T				Units	Result Qual		Result Qual	Result Qual		Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	
cis-1,2-Dichloroethene	4,800	34,000	490	490	ug/kg	< 0.55	<0.52	<0.53	<0.57 F2	<0.62	<0.49	<0.59	<0.49	<0.48	<0.51	<0.56	< 0.54	<0.53	8260C
Ethyl benzene	160,000	230,000	19,000	19,000	ug/kg	<0.27	<0.26	< 0.27	<0.29 F2	0.33 J	< 0.24	<0.29	<0.24	<0.24	<0.26	<0.28	<0.27	<0.27	8260C
Hexachlorobutadiene	820	8,600	5,500	5,500	ug/kg	<0.62	<0.59	<0.61	<0.65 F2	<0.70	<0.55	<0.66	<0.55	<0.55	<0.58	<0.63	< 0.61	< 0.60	8260C
Isobutylalcohol	730,000	6,200,000	30,000	30,000	ug/kg	<23	<22	<23	<24 F2	<26	<21	<25	<21	<20	<22	<24	<23	<22	8260C
Methyl tert-butyl ether (MTBE)	650,000	4,700,000	77	77	ug/kg	<0.44	<0.42	<0.43	<0.46 F2	<0.49	<0.39	<0.47	<0.39	<0.39	<0.41	< 0.45	< 0.43	< 0.42	8260C
Methylene Chloride	19,000	44,000	17	17	ug/kg	<1.4	<1.4	<1.4	<1.5 F2	<1.6	<1.3	<1.5	<1.3	<1.3	<1.3	<1.5	<1.4	<1.4	8260C
Styrene	500,000	1,700,000	11,000	11,000	ug/kg	< 0.32	<0.30	<0.31	<0.33 F2	<0.36	<0.29	<0.34	<0.28	<0.28	< 0.30	<0.33	<0.31	<0.31	8260C
Tetrachloroethene (tetrachloroethylene)	8,300	35,000	180	180	ug/kg	<0.29	<0.28	<0.29	<0.30 F2	<0.33	<0.26	<0.31	<0.26	<0.26	< 0.27	<0.30	<0.29	<0.28	8260C
Toluene	68,000	470,000	20,000	20,000	ug/kg	< 0.64	<0.61	< 0.62	<0.67 F2	<0.72	<0.57	<0.68	< 0.57	<0.56	< 0.60	< 0.65	< 0.63	<0.62	8260C
trans-1,2-Dichloroethene	6,900	48,000	770	770	ug/kg	<0.86	<0.81	< 0.84	<0.89 F2	< 0.97	<0.77	<0.92	<0.76	<0.76	< 0.80	< 0.87	<0.84	< 0.83	8260C
Trichloroethene	100	210	73	73	ug/kg	<0.36	<0.34	< 0.35	<0.37 F2	< 0.40	<0.32	<0.38	<0.32	<0.31	<0.33	<0.36	<0.35	<0.34	8260C
Trichlorofluoromethane	38,000	260,000	37,000	37,000	ug/kg	<0.46	< 0.43	< 0.45	<0.48 F2	<0.51	<0.41	< 0.49	<0.40	<0.40	< 0.43	<0.46	<0.45	<0.44	8260C
Vinyl Chloride	240	790	13	13	ug/kg	<0.39	< 0.37	<0.38	<0.41 F2	< 0.44	<0.35	<0.42	<0.35	<0.35	<0.37	<0.40	<0.39	<0.38	8260C
Xylenes (total)	18,000	120,000	150,000	120,000	ug/kg	1.6 J	< 0.74	<0.76	<0.81 F2	2.1 J	<0.69	<0.83	<0.69	<0.69	<0.72	<0.79	<0.76	<0.75	8260C
Semivolatile Organic Compounds													5.65	10.07	V.12	40.12	10.70	50.75	0200C
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³															
1,1 Biphenyl	230,000	230,000	190,000	190,000	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
1,2,4,5-Tetrachlorobenzene	1,200	12,000	6,900	6,900	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
1,2,4-Trichlorobenzene	66,000	1,200,000	14,000	14,000	ug/kg	<37	<37	<39	<37 F1	<40	<38	<37	<38	<39	<41	<42 F1	<37	<39	8270D
1,2-Dichlorobenzene	99,000	380,000	29,000	29,000	ug/kg	<37	<37	<39	<37 F1	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
1,3-Dichlorobenzene	2,100	18,000	2,100	2,100	ug/kg	<37	<37	<39	<37 F1	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
1,3-Dinitrobenzene	450	5,000	250	250	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
1,4-Dichlorobenzene	6,700	16,000	5,700	5,700	ug/kg	<37	<37	<39	<37 F1	<40	<38	<37	<38	<39	<41	<42 F1	<37	<39	8270D
2,3,4,6-Tetrachlorophenol	140,000	1,400,000	31,000	31,000	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D 8270D
2,4,5-Trichlorophenol	530,000	6,600,000	320,000	320,000	ug/kg	<37	<37	<39	<37 F1	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D 8270D
2,4,6-Trichlorophenol	40,000	170,000	1,300	1,300	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
2,4-Dichlorophenol	16,000	200,000	12,000	12,000	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D 8270D
2,4-Dimethylphenol	93,000	1,100,000	20,000	20,000	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D 8270D
2,4-Dinitrophenol	7,100	69,000	1,700	1,700	ug/kg	<370	<370	<390	<370	<400	<380	<360	<380	<390	<410	<420	<360	<380	8270D 8270D
2,4-Dinitrotoluene	8,900	98,000	1,000	1,000	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	
2,6-Dinitrotoluene	4,300	46,000	390	390	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D 8270D
2-Chloronaphthalene	500,000	8.300,000	500,000	500,000	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D 8270D
2-Chlorophenol	15,000	140,000	1,400	1,400	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
2-Methylnaphthalene	22,000	170,000	1,700	1,700	ug/kg	<37	<37	<39	<37 F1	<40	<38	<37	<38	<39	<41	<42			
2-Nitroaniline	1,700	1,700	1,700	1,700	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39			<37	<39	8270D
3,3-Dichlorobenzidine	970	4,200	1,800	1,800	ug/kg	<370	<370	<390	<370 F1	<400	<380	<360	<380		<41	<42	<37	<39	8270D
3-Nitroaniline	13,000	140,000	1,700	1,700	ug/kg	<37	<37	<39	<37 F1	<400	<38	<37		<390	<410	<420 F1	<360	<380	8270D
4-Nitroaniline	10,000	100,000	1,700	1,700	ug/kg	<370	<370	<390	<370	<400			<38	<39	<41	<42	<37	<39	8270D
4-Nitrophenol	32,000	330,000	2,600	2,600	ug/kg	<370	<370	<390	<370	<400	<380	<360	<380	<390	<410	<420	<360	<380	8270D
Acenaphthene	370,000	6,100,000	220,000	220,000	ug/kg	<37	<37	<39	<37	<400	<380	<360	<380	<390	<410	<420	<360	<380	8270D
Acenaphthylene	350,000	5,100,000	88,000	88.000	ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Aniline	2,400	17,000	65	65	1	<67					<38	<37	<38	<39	<41	<42	<37	<39	8270D
Anthracene	2,200,000	48,000,000	120,000	120,000	ug/kg		<66	<71	<67	<72	<69	<66	<69	<70	<74	<76	<66	<69	8270D
Benz(a)anthracene	620	2,900	330,000		ug/kg	<37	<37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Benzo(a)pyrene	330	-		2,900	ug/kg	<37	37	<39	<37	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Deneo(a)pyrene	620	2,900	23,000	2,900	ug/kg	<37 <37	<37 <37	<39 <39	<37	<40 <40	<38 <38	<37	<38	<39	<41	<42	<37	<39	8270D

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 3 of 5

					Sample Id ¹	2015.0 K.	100	2015.08.1 K5	7 2	015.08.18 L4	2015.08.1 M1	7 2	2015.08.18 M3	2015.08.18 M5	2015.08.18 N2	2015.08.18 O-0.2	2015.08.18 DUP#03 (O-0.2)	2015.08.18 P-0.7	2015.08.18 P-0.4	2015.08.18 P-0.2	2015.08.18 Q-0.4	Analytical Method
Analyte					Units	Result	Qual	Result Qu	al Re	sult Qual	Result Qu	al Re	esult Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qua	l Result Qual	
Benzo(k)fluoranthene	6,200	29,000	120,000	29,000	ug/kg	<37		<37	<	39	<37	<	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Bis(2-chlorisopropyl)ether	4,900	17,000	800	800	ug/kg	<37		<37	<	39	<37	<	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Bis(2-chloroethyl)ether	330	1,100	330	330	ug/kg	<37		<37	<	39	<37	<	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Bis(2-ethylhexyl)phthalate	35,000	170,000	79,000	79,000	ug/kg	110	J,B	120 J,B	<	54	<51	<	<55	<52	<50	<52	<53	<56	<57	<50	<52	8270D
Butyl benzyl phthalate	220,000	220,000	220,000	220,000	ug/kg	<37		<37	<	39	<37	<	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Chrysene	62,000	290,000	76,000	76,000	ug/kg	<37		<37	<	39	<37	<	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Dibenz(a,h)anthracene	330	330	540,000	330	ug/kg	<37		<37	<	39	<37	<	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Dibenzofuran	29,000	150,000	24,000	24,000	ug/kg	<37	1	<37	<	39	<37	<	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Diethyl phthalate	670,000	670,000	360,000	360,000	ug/kg	<37		<37		39	<37	<	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Dimethyl phthalate	1,500,000	1,500,000	1,500,000	1,500,000	ug/kg	<37	+ 1	<37	<	39	<37	<	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Di-n-octyl phthalate	240,000	3,500,000	10,000,000	3,500,000	ug/kg	<37	11.4	<37	<	39	<37	_	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Fluoranthene	220,000	2,900,000	1,200,000	1,200,000	ug/kg	<37	-	<37		39	<37	_	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Fluorene	280,000	5,400,000	230,000	230,000	ug/kg	<37		<37	_	39	<37	_	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D 8270D
Hexachlorobenzene	340	2,000	9,600	2,000	ug/kg	<37	-	<37	_	39	<37	_	<40	<38	<37	<38	<39	<41	<42	<37	39	8270D 8270D
Hexachlorobutadiene	820	8,600	5,500	5,500	ug/kg	<37		<37	_	39	<37 F1	_	<40	<38	<37	<38	<39	<41	<42 F1	<37	<39	8270D 8270D
Hexachlorocyclopentadiene	1,400	9,400	1,200,000	9,400	ug/kg	<370		<370		390	<370	_	400	<380	<360	<380	<390	<410	<420	<360.	<380	8270D 8270D
Hexachloroethane	5,200	68,000	2,200	2,200	ug/kg	<37		<37	_	39	<37	_	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D 8270D
Indeno(1,2,3-cd)pyrene	620	2,900	9,200	2,900	ug/kg	<37		<37	_	39	<37	_	<40	<38	<37	<38	<39	<41	<42	<37		
Isophorone	340,000	1,100,000	560	560	ug/kg	<37		<37	_	39	<37	_	<40	<38	<37	<38	<39	<41	<42	<37	<39 <39	8270D
Naphthalene	6,200	43,000	1,500	1,500	ug/kg	<37		<37		39	<37 F1	_	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D 8270D
Nitrobenzene	2,200	25,000	330	330	ug/kg	<37		<37	_	39	<37	_	<40	<38	<37	<38	<39	<41	<42			
N-Nitrosodi-n-propylamine	330	330	330	330	ug/kg	<37		<37	_	39	<37	_	<40	<38	<37	<38	<39	<41	<42	<37 <37	<39 <39	8270D
Pentachlorophenol	2,800	9,700	1,700	1,700	ug/kg	<370		<370		390	<370	_	400	<380	<360	<380	<390	<410	<420	<360	_	8270D
Phenanthrene	2,100,000	43,000,000	660,000	660,000	ug/kg	<37		<37	_	39	<37	_	<40	<38	<37	<38	<39	<41			<380	8270D
Phenol	1,300,000	15,000,000	11,000	11,000	ug/kg	<37		<37	_	39	<37	_	<40	<38	<37	<38	<39	<41	<42	<37	<39	8270D
Pyrene	230,000	5,600,000	1,100,000	1,100,000	ug/kg	<37		<37		39	<37	_	<40	<38	<37	<38	<39		<42	<37	<39	8270D
N-Nitrosodiphenylamine	90,000	400,000	2,100	2,100	ug/kg	<37		<37		39	<37	_	<40	<38	<37	<38		<41	<42	<37	<39	8270D
Regional Screening Level Summary Table ²	Residential Soil		rial Soil	Screening Level ²	49.45	- 01		0, 1		57	- Oi		940	56	SI	\36	<39	<41	<42	<37	<39	8270D
Di-n-butyl phthalate	630,000	8,200	0,000	8,200,000	ug/kg	<37		<37	1 <	39	<37	1 <	<40	<38	<37	<38	<39	<41	z12	07	1 20 1	9270D
Diphenylamine	160,000	2,100	-	2,100,000	ug/kg	<37		<37	_	39	<37	_	40	<38	<37	<38	<39	<41	<42 <42	<37	<39	8270D
RCRA Metals					49.45		_	01		07	- 01		-10	00.	OI	70	\J9	N41	V4Z	3/	<39	8270D
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³																		
Arsenic	12	12	100	12	mg/kg	NA		NA	IN	IA	NA	13	NA I	NA	NA	17/3.25	NA	NA	-NA	NA I	Lara	(020)
Barium	550	14,000	2,000	2,000	mg/kg	NA		NA		IA.	NA	_	NA NA	NA NA	NA NA	1100	NA NA		NA NA	NA NA	NA NA	6020A
Cadmium	3.9	100	20	20	mg/kg	NA		NA NA	_	IA	NA NA	_	NA NA	NA NA	NA NA	4.9		NA NA	NA NA	NA NA	NA NA	6020A
Chromium	23	610	100	100	mg/kg	NA		NA		IA	NA .	_	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	6020A
Lead	400	1,400	100	100	mg/kg	NA		NA NA	_	IA I	NA NA		NA NA			22	NA NA	NA NA	NA NA	NA	NA NA	6020A
Mercury	2.3	61	4	4	mg/kg	NA		NA NA	_	IA I	NA NA	_	NA NA	NA NA	NA NA	61	NA NA	NA NA	NA	NA	NA NA	6020A
Selenium	39	1,000	20	20		NA		NA NA	_			_		NA NA	NA NA	0.034 J	NA NA	NA NA	NA	NA	NA	7471B
Silver	39	1,000	100	100	mg/kg	NA			_	IA IA	NA NA	_	NA I	NA.	NA NA	2.6	NA	NA	NA	NA	NA	6020A
	33	1,000	100	100	mg/kg	NA		NA	I I	IA	NA	1	NA	NA	NA	0.21 J	NA	NA	NA.	NA	NA	6020A

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 4 of 5

Analyte Dioxins and Furans					Id ¹	2015.08.17 K3	2015.08.17 K5	2015.08.18 L4	2015.08.17 M1	2015.08.18 M3	2015.08.18 M5	2015.08.18 N2	2015.08.18 O-0.2	2015.08.18 DUP#03 (O-0.2)	2015.08.18 P-0.7	2015.08.18 P-0.4	2015.08.18 P-0.2	2015.08.18 Q-0.4	Analytical Method
Dioxins and Furans					Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual								
Regional Screening Level Summary Table ⁴	Residential Soil	Industri	ial Soil	Screening Level ⁴															
2,3,7,8-TCDD	4.9	22	2	22	pg/g	NA	0.76 J	NA	NA	NA	NA	NA	1613B						
2,3,7,8-TetraCDF	NP	NI	P	NP	pg/g	NA	0.30 J	NA	NA	NA	NA	NA	1613B						
1,2,3,7,8-PentaCDD	NP	NI	P	NP	pg/g	NA	0.81 J	NA	NA	NA	NA	NA	1613B						
1,2,3,7,8-PentaCDF	NP	NI	P	NP	pg/g	NA	< 0.066	NA	NA	NA	NA	NA	1613B						
2,3,4,7,8-PentaCDF	NP	NI	P	NP	pg/g	NA	<0.073	NA	NA	NA NA	NA NA	NA NA	1613B						
1,2,3,4,7,8-HexaCDD	NP	NI	P	NP	pg/g	NA	0.78 J	NA NA	NA	NA NA	NA NA	NA NA	1613B						
1,2,3,6,7,8-HexaCDD	NP	NI	P	NP	pg/g	NA	NA	NA	NA	NA	NA	NA NA	2.0 J	NA	NA	NA NA	NA NA	NA NA	1613B
1,2,3,7,8,9-HexaCDD	NP	NI		NP	pg/g	NA	2.2 J	NA	NA	NA	NA	NA NA	1613B						
1,2,3,4,7,8-HexaCDF	NP	NI		NP	pg/g	NA	NA	NA	NA	NA NA	NA	NA	0.23 J	NA	NA	NA NA	NA NA	NA NA	1613B
1,2,3,6,7,8-HexaCDF	NP	NI	P	NP	pg/g	NA	NA	NA	NA	NA NA	NA	NA NA	0.19 J	NA NA	NA NA	NA NA	NA NA	NA NA	1613B
1,2,3,7,8,9-HexaCDF	NP	NI	P	NP	pg/g	NA	NA	NA	NA	NA NA	NA	NA NA	<0.044	NA NA	NA NA	NA NA	NA NA	NA NA	
2,3,4,6,7,8-HexaCDF	NP	NI		NP	pg/g	NA	NA	NA	NA	NA NA	NA NA	NA NA	<0.044	NA NA	NA NA	NA NA	NA NA	NA NA	1613B 1613B
1,2,3,4,6,7,8-HeptaCDD	NP	NI		NP	pg/g	NA	NA	NA	NA NA	NA NA	NA.	NA NA	66 B	NA NA	NA NA	NA NA	NA NA	NA NA	1613B
1,2,3,4,6,7,8-HeptaCDF	NP	NI		NP	pg/g	NA	NA	NA	NA	NA NA	NA	NA	2.5 J, B	NA NA	NA NA	NA NA	NA NA	NA NA	1613B
1,2,3,4,7,8,9-HeptaCDF	NP	NI	P	NP	pg/g	NA	NA	NA	NA	NA NA	NA	NA NA	<0.10	NA NA	NA NA	NA NA	NA NA	NA NA	1613B
OctaCDD	NP	NI		NP	pg/g	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	5600 E, B	NA NA	NA NA	NA NA	NA NA	NA NA	1613B
OctaCDF	NP	NI		NP	pg/g	NA	NA	NA	NA	NA	NA	NA NA	9.4 J, B	NA NA	NA NA	NA NA	NA NA	NA NA	1613B
General Chemistry					l Pes				141	101	101	101	7.7 [3, 1)	III	IVA	NA	INA	INA	1013D
Regional Screening Level Summary Table ²	Residential Soil	Industri	ial Soil	Screening Level ²															
Nitrocellulose	19,000,000	250,000	0.000	250,000,000	mg/kg	NA	<0.89	NA	NA	NA	Lara	L NE	252 2 3 11: 1						
Diesel Range Organics	12,000,000		.,,,,,,		III III MA	101	I IVI	IM	IVA	NA	INA	IVA _	\0.05	IVA	NA	NA	NA	NA	353.2_Nitrocel
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³															
Diesel Range Organics [C10-C28]	65	510	65	65	mg/kg	NA	NA	NA	NA	NA	NA	8015B DRO							
Gasoline Range Organics					1 5 8	- 34			141	.41	-111	.111		TVI.	TVA	MA	IVA	NA	ONIJD_DRO
RECAP Screening Standards ³	SSni	SSi	SSGW	Screening Level ³															
Gasoline Range Organics [C6-C12]	65	510	65	65	mg/kg	NA	NA T	NA	NA	NA	NA	8015B GRO							

Table 1 Area I Surface Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 5 of 5

	Sample Id ¹	2015.08.17 K3	2015.08.17 K5	2015.08.18 L4	2015.08.17 M1	2015.08.18 M3	2015.08.18 M5	2015.08.18 N2	2015.08.18 O-0.2	2015.08.18 DUP#03 (O-0.2)	2015.08.18 P-0.7	2015.08.18 P-0.4	2015.08.18 P-0.2	2015.08.18 Q-0.4	Analytical Method
Analyte	Units	Result Qual	Result Oual	Result Qual	Result Onal	Result Oual	Result Qual	Result Qual	Result Qual						

Concentrations in red bold indicate the result exceeds the Screening Level.

Abbreviations:

< = Not detected at the reporting limit (or MDL or EDL if shown)

Qual = Qualifer

J=Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

F2= MS/MSD RPD exceeds control limits

F1= MS and/or MSD Recovery is outside acceptance limits

B= Compound was found in the blank and sample

q= the reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

*=LCS or LCSD is outside acceptance limits

ug/kg = micrograms per killograms

mg/kg = milligrams per killograms

pg/g = picogram per gram

RECAP = Risk Evaluation/Corrective Action Program

SSni = Soil Screening non-industrial

SSi = Soil Screening industrial

SSGW = Soil Screening protective of groundwater

NA = Not Analyzed

NP = Not Published

Sample Identification = collection date (year.month.day) predetermined onsite grid location. All Area I surface soil samples were collected from 0-2 feet below ground surface. Four surface soil sample locations (B2.3; E6.5; H2; and O-0.2) were analyzed for additional parameters.

² The United States Environmental Protection Agency (USEPA) Regional Screening Level (RSL) Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for industrial soil was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

³ The most conservative Louisiana Department of Environmental Quality (LDEQ) Risk Evaluation/Corrective Action Program (RECAP) Screening Standard (RSS) (dated October 2003) of the soil for industrial use (SSi) and the soil concentration protective of groundwater (SSGW) was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

⁴ The USEPA, RSL Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for industrial soil was determined as the Screening Level for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). The 2005 World Hospital Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors (TEFs) for Dioxins and Dioxin like compounds were used to calculate the total TCDD Toxic Equivalent (TEQ) in each medium. Total TEQs in each medium were compared to the Screening Level for TCDD. Data from the baseline sample event will establish site closeout and site restoration.

⁵ Arsenic was reanalyzed in the surface soil sample location O-0.2. Reported result of Arsenic reanalysis was 3.2 mg/kg. The laboratory noted the sample was non-homogenous and could be the cause of the discrepant results. Concentrations in bold indicate the MDL exceeds the Screening Level.

TABLE 2 SAMPLE LOCATIONS SURVEY DATA BASELINE SAMPLE EVENT M6 DESTRUCTION PROJECT CAMP MINDEN NATIONAL GUARD TRAINING SITE MINDEN, LOUISIANA Page 1 of 2

Sample Location ID	Latitude	Longitude	TOC Elevation	Ground Surface Elevation
	Area I St	urface Soil BoringLocat	ions	
A1	32° 33' 9.27" N	93° 27' 54.47" W	NA	NA
A1.6	32° 33' 9.36" N	93° 27' 53.99" W	NA NA	NA NA
A3	32° 33' 9.32" N	93° 27' 53.01" W	NA	NA NA
A5	32° 33' 9.22" N	93° 27' 51.51" W	NA	NA NA
B2.3	32° 33' 10.17" N	93° 27' 53.41" W	NA	NA.
C1	32° 33' 10.63" N	93° 27' 54.51" W	NA	NA.
C1.6	32° 33' 10.91" N	93° 27' 53.89" W	NA	NA
C3	32° 33' 10.63" N	93° 27' 52.89" W	NA	NA
C5	32° 33' 10.61" N	93° 27' 51.45" W	NA	NA
EI	32° 33' 11.97" N	93° 27' 54.40" W	NA	NA
E3	32° 33' 11.88" N	93° 27' 52.93" W	NA	NA
E5	32° 33' 11.86" N	93° 27' 51.40" W	NA	NA.
E6.5	32° 33' 12.24" N	93° 27' 50.24" W	NA	NA
F7.5	32° 33' 12.43" N	93° 27' 49.42" W	NA	NA
G1	32° 33' 13.23" N	93° 27' 54.47" W	NA	NA NA
G3	32° 33' 13.23" N	93° 27' 52.79" W	NA	NA
G5	32° 33' 13.10" N	93° 27' 51.38" W	NA	NA
H2	32° 33' 13.75" N	93° 27' 53.66" W	NA	NA
H4	32° 33' 13.77" N	93° 27' 51.97" W	NA	NA
I1	32° 33' 14.53" N	93° 27' 54.31" W	NA	NA NA
13	32° 33' 14.40" N	93° 27' 52,90" W	NA	NA NA
15	32° 33' 14.39" N	93° 27' 51.39" W	NA	NA
K1	32° 33' 15.81" N	93° 27' 54.31" W	NA	NA
K3	32° 33' 15.76" N	93° 27' 52.84" W	NA	NA NA
K5	32° 33' 15.72" N	93° 27' 51.36" W	NA NA	NA.
L4	32° 33' 16.38" N	93° 27' 52.09" W	NA	NA
M1	32° 33' 17.04" N	93° 27' 54.40" W	NA	NA
M3	32° 33' 17.00" N	93° 27' 52.89" W	NA	NA
M5	32° 33' 17.03" N	93° 27' 51.31" W	NA	NA
N2	32° 33' 17.70" N	93° 27' 53.56" W	NA	NA
O-0.2	32° 33' 18.63" N	93° 27' 55.18" W	NA	NA
P-0.2	32° 33' 19.16" N	93° 27' 54.90" W	NA	NA
P-0.4	32° 33' 18.94" N	93° 27' 55.59" W	NA	NA
P-0.7	32° 33' 18.96" N	93° 27' 54.58" W	NA	NA
Q-0.4	32° 33' 19.86" N	93° 27' 55.40" W	NA	NA
	Area I Per	imeter Soil Boring Loca	itions	
SB-1	32° 33' 17.97" N	93° 27' 52.77" W	NA	l NA
SB-2	32° 33' 15.53" N	93° 27' 54.88" W	NA NA	NA NA
SB-3	32° 33' 12.14" N	93° 27' 54.82" W	NA	NA NA
SB-4	32° 33' 8.92" N	93° 27' 52.76" W	NA NA	NA NA
SB-5	32° 33' 12.22" N	93° 27' 50.89" W	NA	NA NA
SB-6	32° 33' 15.53" N	93° 27' 50.88" W	NA NA	NA NA
		Monitoring Well Location		1762
MW-1	32° 33' 15.53" N	93° 27' 50.88" W	205.16	202.00
MW-2	32° 33' 17.97" N	93° 27' 52.77" W	206.07	202.08 203.18
MW-3	32° 33' 12.22" N	93° 27' 50.89" W	204.14	
MW-4	32° 33' 15.53" N	93° 27' 54.88" W	203.66	201.72 199.75
MW-5	32° 33' 8.92" N	93° 27' 52.76" W	203.66	200.78
MW-6	32° 33' 12.14" N	93° 27' 54.82" W	202.69	200.78
IVI VY -U	32 33 12.14 IV	23 21 34.02 VV	202.09	200.31

TABLE 2 SAMPLE LOCATIONS SURVEY DATA BASELINE SAMPLE EVENT M6 DESTRUCTION PROJECT CAMP MINDEN NATIONAL GUARD TRAINING SITE

MINDEN, LOUISIANA Page 2 of 2

Sample Location ID	Latitude	Longitude	TOC Elevation	Ground Surface Elevation
	Clarkes Ba	you Surface Water Loc	ations	
Downstream	32° 32' 48.78" N	93° 28' 10.41" W	NA	NA
Point of Discharge	32° 33' 1.92" N	93° 28' 23.74" W	NA	NA
Upstream	32° 33' 12.74" N	93° 28' 24.70" W	NA	NA
	Clarkes	Bayou Sediment Locati	ons	
Downstream	32° 32' 48.78" N	93° 28' 10.41" W	NA	NA
Point of Discharge	32° 33' 1.92" N	93° 28' 23.74" W	NA	NA
Upstream	32° 33' 12.74" N	93° 28' 24.70" W	NA	NA

Notes:

- 1) Latitude & Longitude are referenced to the North American Datum of 1983 (NAD83).
- 2) Elevations are referenced to the National Geodetic Vertical Datum (NGVD) of 1929.
- 3) The horizontal locations of the Area I surface soil borings, Area I perimeter soil borings, and Clarkes Bayou surface water and sediment samples were determined by a portable Garmin GPSMAP 62S hand held during the Baseline Environmental Investigation. Area I perimeter soil borings were completed with monitoring wells MW-1 through MW-6 for groundwater sampling.
- 4) The Top of Casing (TOC), ground surface elevation, and location of monitor wells MW-1 throung MW-6 were surveyed by SEMS, Inc. on August 20, 2015.
- 5) Upon completion of the M6 Destruction Project, Area I surface soil, Area I groundwater, and Clarkes Bayou surface water and sediment samples shall be collected from the reported locations.

NA = Not Applicable

TABLE 3 AREA I PERIMETER SOIL BORING PID SUMMARY BASELINE SAMPLE EVENT M6 DESTRUCTION PROJECT CAMP MINDEN NATIONAL GUARD TRAINING SITE Page 1 of 3

Soil Boring Location (feet bgs)	Date/Time Collected (military)	PID Result (ppm)	Laboratory Analyses Performed
SB-1 (0-2)	8/17/2015 @ 1054	2	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-1 (2-4)	8/17/2015 @ 1056	0	None
SB-1 (4-6)	8/17/2015 @ 1058	0	None
SB-1 (6-8)	8/17/2015 @ 1110	0	None
SB-1 (8-10)	8/17/2015 @ 1114	0	None
SB-1 (10-12)	8/17/2015 @ 1155	0	None
SB-1 (12-14)	8/17/2015 @ 1158	0	None
SB-1 (14-16)	8/17/2015 @ 1203	0	None
SB-1 (16-18)	8/17/2015 @ 1211	0	None
SB-1 (18-20)	8/17/2015 @ 1214	0	None
SB-1 (20-22)	8/17/2015 @ 1220	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-1 (22-24)	8/17/2015 @ 1224	0	None
SB-1 (24-26)	8/17/2015 @ 1230	0	None
SB-1 (26-28)	8/17/2015 @ 1240	2	None
SB-1 (28-30)	8/17/2015 @ 1245	2	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-2 (0-2)	8/17/2015 @ 1450	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-2 (2-4)	8/17/2015 @ 1454	0	None
SB-2 (4-6)	8/17/2015 @ 1458	0	None
SB-2 (6-8)	8/17/2015 @ 1506	0	None
SB-2 (8-10)	8/17/2015 @ 1509	0	None
SB-2 (10-12)	8/17/2015 @ 1515	0	None
SB-2 (12-14)	8/17/2015 @ 1518	0	None
SB-2 (14-16)	8/17/2015 @ 1521	0	None
SB-2 (16-18)	8/17/2015 @ 1523	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-2 (18-20)	8/17/2015 @ 1525	0	None
SB-2 (20-22)	8/17/2015 @ 1545	0	None
SB-2 (22-24)	8/17/2015 @ 1549	0	None
SB-2 (24-26)	8/17/2015 @ 1551	0	None
SB-2 (26-28)	8/17/2015 @ 1554	0	None
SB-2 (28-30)	8/17/2015 @ 1600	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-3 (0-2)	8/17/2015 @ 1715	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-3 (2-4)	8/17/2015 @ 1720	0	None
SB-3 (4-6)	8/17/2015 @ 1725	0	None
SB-3 (6-8)	8/17/2015 @ 1732	0	None
SB-3 (8-10)	8/17/2015 @ 1736	0	None
SB-3 (10-12)	8/17/2015 @ 1742	0	None
SB-3 (12-14)	8/17/2015 @ 1746	0	None
SB-3 (14-16)	8/17/2015 @ 1750	0	None
SB-3 (16-18)	8/17/2015 @ 1755	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-3 (18-20)	8/17/2015 @ 1800	0	None
SB-3 (20-22)	8/17/2015 @ 1808	0	None
SB-3 (22-24)	8/17/2015 @ 1812	0	None

TABLE 3 AREA I PERIMETER SOIL BORING PID SUMMARY BASELINE SAMPLE EVENT M6 DESTRUCTION PROJECT CAMP MINDEN NATIONAL GUARD TRAINING SITE Page 2 of 3

Soil Boring Location (feet bgs)	Date/Time Collected (military)	PID Result (ppm)	Laboratory Analyses Performed
SB-3 (24-26)	8/17/2015 @ 1815	0	None
SB-3 (26-28)	8/17/2015 @ 1818	0	None
SB-3 (28-30)	8/17/2015 @ 1821	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-4 (0-2)	8/18/2015 @ 0810	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-4 (2-4)	8/18/2015 @ 0813	0	None
SB-4 (4-6)	8/18/2015 @ 0817	0	None
SB-4 (6-8)	8/18/2015 @ 0820	0	None
SB-4 (8-10)	8/18/2015 @ 0824	0	None
SB-4 (10-12)	8/18/2015 @ 0827	0	None
SB-4 (12-14)	8/18/2015 @ 0832	0	None
SB-4 (14-16)	8/18/2015 @ 0835	0	None
SB-4 (16-18)	8/18/2015 @ 0839	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-4 (18-20)	8/18/2015 @ 0842	0	None
SB-4 (20-22)	8/18/2015 @ 0846	0	None
SB-4 (22-24)	8/18/2015 @ 0851	0	None
SB-4 (24-26)	8/18/2015 @ 0854	0	None
SB-4 (26-28)	8/18/2015 @ 0858	0	None
SB-4 (28-30)	8/18/2015 @ 0903	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-5 (0-2)	8/18/2015 @ 0955	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-5 (2-4)	8/18/2015 @ 0958	0	None
SB-5 (4-6)	8/18/2015 @ 1003	0	None
SB-5 (6-8)	8/18/2015 @ 1007	0	None
SB-5 (8-10)	8/18/2015 @ 1011	0	None
SB-5 (10-12)	8/18/2015 @ 1014	0	None
SB-5 (12-14)	8/18/2015 @ 1017	0	None
SB-5 (14-16)	8/18/2015 @ 1020	0	None
SB-5 (16-18)	8/18/2015 @ 1024	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-5 (18-20)	8/18/2015 @ 1027	0	None
SB-5 (20-22)	8/18/2015 @ 1031	0	None
SB-5 (22-24)	8/18/2015 @ 1034	0	None
SB-5 (24-26)	8/18/2015 @ 1039	0	None
SB-5 (26-28)	8/18/2015 @ 1044	0	None
SB-5 (28-30)	8/18/2015 @ 1050	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-6 (0-2)	8/18/2015 @ 1145	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-6 (2-4)	8/18/2015 @ 1148	0	None
SB-6 (4-6)	8/18/2015 @ 1151	0	None
SB-6 (6-8)	8/18/2015 @ 1155	0	None
SB-6 (8-10)	8/18/2015 @ 1158	0	None
SB-6 (10-12)	8/18/2015 @ 1204	0	None
SB-6 (12-14)	8/18/2015 @ 1207	0	None
SB-6 (14-16)	8/18/2015 @ 1211	0	None
SB-6 (16-18)	8/18/2015 @ 1214	0	None
SB-6 (18-20)	8/18/2015 @ 1217	0	None

TABLE 3 AREA I PERIMETER SOIL BORING PID SUMMARY BASELINE SAMPLE EVENT M6 DESTRUCTION PROJECT CAMP MINDEN NATIONAL GUARD TRAINING SITE

Page 3 of 3

Soil Boring Location (feet bgs)	Date/Time Collected (military)	PID Result (ppm)	Laboratory Analyses Performed
SB-6 (20-22)	8/18/2015 @ 1222	0	Nitroaromatics and Nitramines; VOCs; and SVOCs
SB-6 (22-24)	8/18/2015 @ 1229	0	None
SB-6 (24-26)	8/18/2015 @ 1232	0	None
SB-6 (26-28)	8/18/2015 @ 1236	0	None
SB-6 (28-30)	8/18/2015 @ 1240	0	Nitroaromatics and Nitramines; VOCs; and SVOCs

Notes:

- 1) Samples collected from Area I perimeter soil boring locations were field screened for hydrocarbon vapors using a photo ionization detector (PID). Three soil samples per soil boring were selected from each perimeter borehole for laboratory analysis.
- 2) The soil samples selected for laboratory analyses were selected based on RECAP Appendix B criteria which are based upon the following considerations: highest PID reading in surface soil (0–15 feet bgs); highest PID reading in subsurface soil: (> 15 feet bgs); first encountered groundwater; and total depth of borehole.
- 3) feet bgs = feet below ground surface

Table 4 Area I Perimeter Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 1 of 4

						Sample Id ¹	2015.08.17 SB-1 (0-2)		2015.08.17 SB-1 (28-30)			2015.08.17 SB-2 (28-30)	2015.08.17 SB-3 (0-2)		2015.08.17 SB-3 (28-30)	2015.08.17 SB DUP#1 SB-3 (28-30)	Analytical Method
Analyte						Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	
Nitroaromatics and Nitramines																	
Regional Screening Level	Residential Soil	Indust	rial Soil		ning Level ²												
Summary Table ²	110 ==			Surface Soil (0-15 ft bgs)	Sub-Surface Soil (>15 ft bgs)												
1,3,5-Trinitrobenzene	220,000	3,20	0,000	3,200,000	3,200,000	ug/kg	<27	<25	<27	<27	<26	<26	<27	<27	<27	<27	8330B
1,3-Dinitrobenzene	630	8,	200	8,200	8,200	ug/kg	<42	<40	<43	<43	<41	<42	<42	<43	<42	<43	8330B
2,4,6-Trinitrotoluene	3,600	51	,000	51,000	51,000	ug/kg	<35	<33	<35	<35	<34	<34	<35	<35	<35	<35	8330B
2,4-Dinitrotoluene	1,700	7,	400	7,400	7,400	ug/kg	<37	<34	<37	<37	<36	<36	<37	<37	<37	<37	8330B
2,6-Dinitrotoluene	360	1,	500	1,500	1,500	ug/kg	<62	<58	<63	<63	<60	<61	<62	<62	<62	<63	8330B
2-Amino-4,6-dinitrotoluene	15,000	230	,000	230,000	230,000	ug/kg	<42	<39	<42	<42	<41	<41	<42	<42	<42	<42	8330B
4-Amino-2,6-dinitrotoluene	15,000		,000	230,000	230,000	ug/kg	<91	<85	<92	<92	<88	<90	<91	<91	<91	<92	8330B
3-Nitrotoluene	630	8,	200	8,200	8,200	ug/kg	<54	<51	<55	<55	<53	<53	<54	<54	<54	<55	8330B
Nitrobenzene	5,100	22.	,000	22,000	22,000	ug/kg	<42	<39	<43	<42	<41	<42	<42	<42	<42	<43	8330B
Nitroglycerin	630	8,	200	8,200	8,200	ug/kg	<260	<250	<270	<270	<260	<260	<260	<260	<260	<270	8330B
2-Nitrotoluene	3,200	15,	,000	15,000	15,000	ug/kg	<63	<59	<64	<64	<62	<63	<63	<64	<63	<65	8330B
4-Nitrotoluene	25,000	140	,000	140,000	140,000	ug/kg	<79	<74	<81	<80	<77	<78	<79	<80	<79	<81	8330B
Pentaerythritol Tetranitrate	13,000	160	,000	160,000	160,000	ug/kg	<330	<310	<340	<340	<330	<330	<330	<340	<340	<340	8330B
RDX	6,100	28,	,000	28,000	28,000	ug/kg	<61	<57	<62	<61	<59	<60	<60	<61	<61	<62	8330B
HMX	390,000	5,70	0,000	5,700,000	5,700,000	ug/kg	<38	<35	<38	<38	<37	<37	<38	<38	<38	<38	8330B
Tetryl	16,000	230	,000	230,000	230,000	ug/kg	<45	<42	<45	<45	<43	<44	<45	<45	<45	<45	8330B
Volatile Organic Compounds																	00000
				Scree	ning Level ³											-	
RECAP Screening Standards ³	SSni	SSi	SSGW	Surface Soil	Sub-Surface Soil												
				(0-15 ft bgs)	(>15 ft bgs)												
1,1,1,2-Tetrachloroethane	2,700	5,900	46	46	46	ug/kg	<0.41	<0.34	<0.39	<0.38	<0.46	< 0.43	<0.44	<0.50	<0.30	<0.30	8260C
1,1,1-Trichloroethane	82,000	700,000	4,000	4,000	4,000	ug/kg	<0.50	<0.42	<0.48	< 0.47	<0.57	<0.52	<0.54	<0.61	<0.36	<0.36	8260C
1,1,2,2-Tetrachloroethane	810	2,000	6	6	6	ug/kg	< 0.47	<0.39	<0.45	<0.43	<0.53	<0.49	<0.51	<0.57	<0.34	<0.34	8260C
1,1,2-Trichloroethane	1,900	4,300	58	58	58	ug/kg	< 0.67	<0.55	< 0.64	<0.62	<0.75	< 0.69	<0.72	<0.82	<0.48	<0.48	8260C
1,1-Dichloroethane	66,000	470,000	7,500	7,500	7,500	ug/kg	<0.46	<0.38	<0.44	<0.42	<0.52	< 0.47	<0.49	<0.56	<0.33	<0.33	8260C
1,1-Dichloroethene	13,000	91,000	85	85	85	ug/kg	<1.9	<1.6	<1.8	<1.7	<2.1	<2.0	<2.0	<2.3	<1.4	<1.4	8260C
1,2-Dibromo-3-chloropropane	180	1,600	10	10	10	ug/kg	<1.7	<1.4	<1.6	<1.6	<1.9	<1.8	<1.8	<2.1	<1.2	<1.2	8260C
1,2-Dichloroethane	820	1,800	35	35	35	ug/kg	<1.0	<0.84	<0.98	<0.95	<1.2	<1.1	<1.1	<1.2	<0.74	<0.74	8260C
1,2-Dichloropropane	690	1,800	42	42	42	ug/kg	< 0.44	<0.37	<0.43	<0.41	<0.50	< 0.46	<0.48	<0.54	<0.32	<0.32	8260C
1,3-Dichloropropene, Total	3,100	10,000	40	40	40	ug/kg	<1.1	<0.92	<1.1	<1.0	<1.3	<1.2	<1.2	<1.4	<0.80	<0.80	8260C
2-Butanone (methyl ethyl ketone)	590,000	4,400,000	5,000	5,000	5,000	ug/kg	<2.2	<1.9	<2.2	<2.1	<2.5	<2.3	<2.4	<2.7	<1.6	<1.6	8260C
4-Methyl-2-pentanone (methyl isobutyl ketone)	450,000	3,100,000	6,400	6,400	6,400	ug/kg	<0.85	<0.71	<0.82	<0.79	<0.97	<0.89	<0.92	<1.0	<0.62	<0.62	8260C
Acetone	170,000	1,400,000	1,500	1,500	1,500	ug/kg	<7.6	<6.3	<7.3	<7.0	<8.6	<7.9	<8.2	<9.3	<5.5	<5.5	8260C
Benzene	1,500	3,100	51	51	51	ug/kg	<0.29	<0.24	<0.28	<0.27	<0.33	<0.30	<0.32	<0.36	<0.21	<0.21	8260C
Bromodichloromethane	1,800	4,200	920	920	920	ug/kg	<0.29	<0.24	<0.28	<0.27	<0.33	<0.30	<0.32	<0.36	<0.21	<0.21	8260C
	48,000	180,000	1,800	1,800	1,800	ug/kg	<0.43	<0.36	<0.42	<0.40	<0.49	<0.45	<0.47	<0.53	<0.31	<0.31	8260C
Bromoform					77	0.0								·0.55	10.51	-0.51	0200C
Bromoform Bromomethane	430	3,000	40	40	40	ug/kg	<1.3	<1.1	<1.2	<1.2	<1.5	<1.3	<14	<16	<0.93	<0.03	82600
	430 36,000	3,000 250,000	40 11,000	40 11,000	40 11,000	ug/kg ug/kg	<0.81	<1.1 <0.67	<0.78	<1.2 <0.75	<0.91	<1.3 <0.84	<1.4 <0.87	<1.6 <0.99	<0.93 <0.58	<0.93 <0.58	8260C 8260C

Table 4
Area I Perimeter Soil Data Summary
Baseline Sample Event
M6 Destruction Project
Camp Minden National Guard Training Site
Minden, Louisiana
Page 2 of 4

						Sample Id ¹	2015.08.17 SB-1 (0-2)	2015.08.17 SB-1 (20-22)	2015.08.17 SB-1 (28-30)	2015.08.17 SB-2 (0-2)	2015.08.17 SB-2 (16-18)	2015.08.17 SB-2 (28-30)	2015.08.17 SB-3 (0-2)	2015.08.17 SB-3 (16-18)	2015.08.17 SB-3 (28-30)	2015.08.17 SB DUP#1 SB-3 (28-30)	Analytical Method
Analyte						Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Oual	Result Qual	Result Qual	
Chlorobenzene	17,000	120,000	3,000	3,000	3,000	ug/kg	<0.44	< 0.37	<0.43	<0.41	<0.50	<0.46	<0.48	<0.54	<0.32	<0.32	8260C
Dibromochloromethane (chlorodibromomethane)	2,200	5,400	1,000	1,000	1,000	ug/kg	<0.48	<0.40	< 0.46	<0.45	<0.54	<0.50	<0.52	<0.59	<0.35	<0.35	8260C
Chloroethane	4,100	8,200	35	35	35	ug/kg	<0.61	<0.50	<0.59	<0.56	<0.69	< 0.63	<0.66	<0.74	<0.44	<0.44	8260C
Chloroform	44	300	900	300	900	ug/kg	<0.44	<0.37	<0.43	<0.41	<0.50	<0.46	<0.48	<0.54	<0.32	<0.32	8260C
Chloromethane	3,500	7,300	100	100	100	ug/kg	< 0.76	<0.63	<0.73	<0.71	<0.86	<0.79	<0.82	<0.93	<0.55	<0.55	8260C
cis-1,2-Dichloroethene	4,800	34,000	490	490	490	ug/kg	< 0.70	<0.58	<0.68	<0.65	<0.79	<0.73	<0.76	<0.86	<0.51	<0.51	8260C
Ethyl benzene	160,000	230,000	19,000	19,000	19,000	ug/kg	<0.35	<0.29	<0.34	<0.33	<0.40	<0.36	<0.38	<0.43	<0.25	<0.25	8260C
Hexachlorobutadiene	820	8,600	5,500	5,500	5,500	ug/kg	<0.79	<0.66	<0.77	<0.74	<0.90	<0.83	<0.86	<0.97	<0.58	<0.58	8260C
Isobutylalcohol	730,000	6,200,000	30,000	30,000	30,000	ug/kg	<30	<25	<29	<28	<34	<31	<32	<36	<22	<21	8260C
Methyl tert-butyl ether (MTBE)	650,000	4,700,000	77	77	77	ug/kg	<0.56	<0.47	<0.54	<0.52	<0.64	<0.58	<0.61	<0.69			
Methylene Chloride	19,000	44,000	17	17	17	ug/kg	<1.8	<1.5	<1.8	<1.7	<2.1	<1.9	<2.0	<2.3	<0.41	<0.41	8260C
Styrene	500,000	1,700,000	11,000	11,000	11,000	ug/kg	<0.41	<0.34	<0.39	<0.38	<0.46	<0.43	<0.44	<0.50	<0.30	<0.30	8260C
Tetrachloroethene (tetrachloroethylene)	8,300	35,000	180	180	180	ug/kg	<0.37	<0.31	<0.36	<0.35	<0.42	<0.43	<0.44	<0.46			8260C
Toluene	68,000	470,000	20,000	20,000	20,000	ug/kg	<0.82	<0.68	<0.79	<0.76	<0.42	<0.85			<0.27	<0.27	8260C
trans-1,2-Dichloroethene	6,900	48,000	770	770	770	ug/kg	<1.1	<0.91	<1.1	<1.0	<1.2		<0.88	<1.0	<0.59	<0.59	8260C
Trichloroethene	100	210	73	73	73	ug/kg	<0.46	<0.38	<0.44	<0.42	<0.52	<1.1	<1.2	<1.3	<0.80	<0.80	8260C
Trichlorofluoromethane	38,000	260,000	37,000	37,000	37,000		<0.46					<0.47	<0.49	<0.56	<0.33	<0.33	8260C
Vinyl Chloride	240	790	13	13	13	ug/kg		<0.48	<0.56	<0.54	<0.66	<0.61	<0.63	<0.71	<0.42	<0.42	8260C
v myr emoride	240	190	13	13	13	ug/kg	<0.50	< 0.42	<0.48	< 0.47	<0.57	<0.52	< 0.54	<0.61	<0.36	<0.36	8260C
Vulenes (total)	19 000	120,000	150,000	120,000	150,000		00.00	<0.00	-0.00	-0.00				1			
Xylenes (total) Semivolatile Organic Compounds	18,000	120,000	150,000	120,000	150,000	ug/kg	<0.99	<0.82	<0.96	<0.92	<1.1	<1.0	<1.1	<1.2	<0.72	<0.72	8260C
Semivolatile Organic Compounds RECAP Screening Standards ³	SSni	SSi	SSGW	Screet Surface Soil (0-15 ft bgs)	ning Level ³ Sub-Surface Soil (>15 ft bgs)		<0.99	<0.82		<0.92	<1.1	<1.0	<1.1	<1.2	<0.72	<0.72	8260C
Semivolatile Organic Compounds RECAP Screening Standards ³ 1,1 Biphenyl	SSni 230,000	SSi 230,000	SSGW 190,000	Screen Surface Soil (0-15 ft bgs) 190,000	Sub-Surface Soil (>15 ft bgs) 190,000	ug/kg	<38	<0.82	<38	<0.92	<44	<42	<1.1	<1.2	<0.72	<0.72	8260C 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene	SSni 230,000 1,200	SSi 230,000 12,000	SSGW 190,000 6,900	Screen Surface Soil (0-15 ft bgs) 190,000 6,900	ning Level ³ Sub-Surface Soil (>15 ft bgs)	ug/kg ug/kg	<38 <38										
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	SSni 230,000 1,200 66,000	SSi 230,000 12,000 1,200,000	SSGW 190,000 6,900 14,000	Screen Surface Soil (0-15 ft bgs) 190,000 6,900 14,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000	ug/kg	<38	<36	<38	<36	<44	<42	<39	<44	<40	<41	8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	SSni 230,000 1,200 66,000 99,000	SSi 230,000 12,000	SSGW 190,000 6,900	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000	ug/kg ug/kg	<38 <38	<36 <36	<38 <38	<36 <36	<44 <44	<42 <42	<39 <39	<44 <44	<40 <40	<41 <41	8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	SSni 230,000 1,200 66,000	SSi 230,000 12,000 1,200,000	SSGW 190,000 6,900 14,000 29,000 2,100	Screen Surface Soil (0-15 ft bgs) 190,000 6,900 14,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000	ug/kg ug/kg ug/kg	<38 <38 <38	<36 <36 <36	<38 <38 <38	<36 <36 <36	<44 <44 <44	<42 <42 <42	<39 <39 <39	<44 <44 <44	<40 <40 <40	<41 <41 <41	8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene	SSni 230,000 1,200 66,000 99,000 2,100 450	SSi 230,000 12,000 1,200,000 380,000	SSGW 190,000 6,900 14,000 29,000	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000	sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250	ug/kg ug/kg ug/kg ug/kg	<38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<38 <38 <38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36	<44 <44 <44 <44	<42 <42 <42 <42 <42	<39 <39 <39 <39	<44 <44 <44 <44	<40 <40 <40 <40	<41 <41 <41 <41	8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000	SSGW 190,000 6,900 14,000 29,000 2,100	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100	ug/kg ug/kg ug/kg ug/kg ug/kg	<38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36	<38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36	<44	<42 <42 <42 <42 <42 <42	<39 <39 <39 <39 <39 <39	<44 <44 <44 <44 <44	<40 <40 <40 <40 <40	<41	8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol	SSni 230,000 1,200 66,000 99,000 2,100 450	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000	SSGW 190,000 6,900 14,000 29,000 2,100 250	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250	sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250	ug/kg ug/kg ug/kg ug/kg ug/kg	<38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36	<44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42	<39 <39 <39 <39 <39 <39 <39	<44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40	<41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000	190,000 6,900 14,000 29,000 2,100 250 5,700	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700	sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36	<38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36	<44 <44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42 <42	<39 <39 <39 <39 <39 <39 <39 <39	<44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40	<41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000	\$SGW 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<38 <38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36		<36 <36 <36 <36 <36 <36 <36 <36 <36	<44 <44 <44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	39 39 39 39 39 39 39 39 39 39 39 39 39	<44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40	<41 <41 <41 <41 <41 <41 <41 <41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000	\$SGW 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg		<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<44	<42	39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000	SSGW 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300	ug/kg		<36 <36		<36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	39 39	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000	\$SGW 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000	ning Level ³ Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000	ug/kg		<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	39 39	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,-Dichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000	\$\$GW\$ 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000	ning Level ³ Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000	ug/kg	38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<38	<36	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	39 39<	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2-Hrichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000	\$\$GW\$ 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700	ning Level ³ Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700	ug/kg		<36	<38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42	39 39<	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 170,000 200,000 1,100,000 69,000 98,000	\$\$GW\$ 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000	ning Level ³ Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000	ug/kg	38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<42	39 39	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900 4,300	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 170,000 200,000 1,100,000 69,000 98,000 46,000	SSGW 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390	ning Level ³ Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000	ug/kg	<38	36 36 36 36 36 36 36 36 36 36 350 36 36 36 36 36 36 36 36 36 36 36 36	⊲38 ⊲38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	39 39	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrobenzene 2,4-Dinitrobenzene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900 4,300 500,000	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000 98,000 46,000 8,300,000	\$\$GW\$ 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400	ug/kg	<38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	⊲38 ⊲38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	39 39	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrobenzene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol	SSni 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900 4,300 500,000 15,000	\$\$i 230,000 12,000 1,200,000 380,000 18,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000 98,000 46,000 8,300,000 140,000 170,000	\$\$GW\$ 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400 1,700	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400 1,700	ning Level ³ Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400 1,700	ug/kg	38 38	<36	<38	<36	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	39 39	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene	\$\$\text{Sni}\$ 230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900 4,300 500,000 15,000 22,000	SSi 230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000 98,000 46,000 8,300,000 140,000	\$\$GW\$ 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400	Screet Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400	ug/kg	<38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38 <38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	⊲38 ⊲38	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	39 39	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D

Table 4 Area I Perimeter Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 3 of 4

						Sample Id ¹	2015.08.17 SB-1 (0-2)	2015.08.17 SB-1 (20-22)	2015.08.17 SB-1 (28-30		15.08.17 3-2 (0-2)	2015.08.17 SB-2 (16-18)	2015.08.17 SB-2 (28-30)	2015.08.17 SB-3 (0-2)	2015.08.17 SB-3 (16-18)	2015.08.17 SB-3 (28-30)	2015.08.17 SB DUP#1 SB-3 (28-30)	Analytical Method
Analyte						Units	Result Qual	Result Qual	Result Qu	al Resu	ult Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	
4-Nitroaniline	10,000	100,000	1,700	1,700	1,700	ug/kg	<380	<350	<380	<35	50	<430	<420	<390	<440	<400	<400	8270D
4-Nitrophenol	32,000	330,000	2,600	2,600	2,600	ug/kg	<380	<350	<380	<35	50	<430	<420	<390	<440	<400	<400	8270D
Acenaphthene	370,000	6,100,000	220,000	220,000	220,000	ug/kg	<38	<36	<38	<36	6	<44	<42	<39	<44	<40	<41	8270D
Acenaphthylene	350,000	5,100,000	88,000	88,000	88,000	ug/kg	<38	<36	<38	<36	6	<44	<42	<39	<44	<40	<41	8270D
Aniline	2,400	17,000	65	65	65	ug/kg	<68	<64	<69	<64	4	<78	<76	<70	<80	<73	<73	8270D
Anthracene	2,200,000	48,000,000	120,000	120,000	120,000	ug/kg	<38	<36	<38	<36	6	<44	<42	<39	<44	<40	<41	8270D
Benz(a)anthracene	620	2,900	330,000	2,900	330,000	ug/kg	<38	<36	<38	<36	6	<44	<42	<39	<44	<40	<41	8270D
Benzo(a)pyrene	330	330	23,000	330	23,000	ug/kg	<38	<36	<38	<36	6	<44	<42	<39	<44	<40	<41	8270D
Benzo(b)fluoranthene	620	2,900	220,000	2,900	220,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Benzo(k)fluoranthene	6,200	29,000	120,000	29,000	120,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Bis(2-chlorisopropyl)ether	4,900	17,000	800	800	800	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Bis(2-chloroethyl)ether	330	1,100	330	330	330	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Bis(2-ethylhexyl)phthalate	35,000	170,000	79,000	79,000	79,000	ug/kg	<52	<49	<52	<49		<59	<57	<53	<60	<55	<55	8270D
Butyl benzyl phthalate	220,000	220,000	220,000	220,000	220,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Chrysene	62,000	290,000	76,000	76,000	76,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Dibenz(a,h)anthracene	330	330	540,000	330	540,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D 8270D
Dibenzofuran	29,000	150,000	24,000	24,000	24,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D 8270D
Diethyl phthalate	670,000	670,000	360,000	360,000	360,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D 8270D
Dimethyl phthalate	1,500,000	1,500,000	1,500,000	1,500,000	1,500,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D 8270D
Di-n-octyl phthalate	240,000	3,500,000	10,000,000	3,500,000	10,000,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40		
Fluoranthene	220,000	2,900,000	1,200,000	1,200,000	1,200,000	ug/kg ug/kg	<38	<36	<38	<36		<44	<42	<39	<44		<41	8270D
Fluorene	280,000	5,400,000	230,000	230,000	230,000	ug/kg ug/kg	<38	<36	<38	<36		<44	<42		ļ	<40	<41	8270D
Hexachlorobenzene	340	2,000	9,600	2,000			<38	<36	<38					<39	<44	<40	<41	8270D
Hexachlorobutadiene	820	8,600	5,500	5,500	9,600 5,500	ug/kg	<38 *	<36 *	<38 *	<36		<44	<42	<39	<44	<40	<41	8270D
Hexachlorocyclopentadiene	1,400	9,400	1,200,000	9,400		ug/kg				<36		<44 *	<42 *	<39 *	<44 *	<40 *	<41 *	8270D
Hexachloroethane	5,200	68,000	2,200	2,200	1,200,000	ug/kg	<380	<350	<380	<35		<430	<420	<390	<440	<400	<400	8270D
Indeno(1,2,3-cd)pyrene	620	2,900			2,200	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
			9,200	2,900	9,200	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Isophorone Naphthalene	340,000	1,100,000	560	560	560	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
*	6,200	43,000	1,500	1,500	1,500	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Nitrobenzene	2,200	25,000	330	330	330	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
N-Nitrosodi-n-propylamine	330	330	330	330	330	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Pentachlorophenol	2,800	9,700	1,700	1,700	1,700	ug/kg	<380	<350	<380	<35		<430	<420	<390	<440	<400	<400	8270D
Phenanthrene	2,100,000	43,000,000	660,000	660,000	660,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Phenol	1,300,000	15,000,000	11,000	11,000	11,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
Pyrene	230,000	5,600,000	1,100,000	1,100,000	1,100,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D
N-Nitrosodiphenylamine	90,000	400,000	2,100	2,100	2,100	ug/kg	<38	<36	<38	<36	6	<44	<42	<39	<44	<40	<41	8270D
Regional Screening Level Summary Table ²	Residential Soil	Industr	rial Soil	Screen Surface Soil (0-15 ft bgs)	ing Level ² Sub-Surface Soil (>15 ft bgs)													
Di-n-butyl phthalate	630,000	8,200	0,000	8,200,000	8,200,000	ug/kg	<38	<36	<38	<36	6	<44	<42	<39	<44	<40	<41	8270D
Diphenylamine	160,000	2,100		2,100,000	2,100,000	ug/kg	<38	<36	<38	<36		<44	<42	<39	<44	<40	<41	8270D

Table 4
Area I Perimeter Soil Data Summary
Baseline Sample Event
M6 Destruction Project
Camp Minden National Guard Training Site
Minden, Louisiana
Page 4 of 4

	Sample Id ¹	2015.08.17 SB-1 (0-2)	2015.08.17 SB-1 (20-22)	2015.08.17 SB-1 (28-30)			2015.08.17 SB-2 (28-30)			SB-3 (28-30)		Analytical Method
Analyte	Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	

Notes:

Concentrations in bold indicate the MDL exceeds the Screening Level.

Abbreviations:

<= Not detected at the reporting limit (or MDL or EDL if shown)

Qual = Qualifer

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

F2= MS/MSD RPD exceeds control limits

F1= MS and/or MSD Recovery is outside acceptance limits

*=LCS or LCSD is outside acceptance limits

ug/kg = micrograms per killograms

RECAP = Risk Evaluation/Corrective Action Program

SSni = Soil Screening non-industrial

SSi = Soil Screening industrial

SSGW = Soil Screening protective of groundwater

¹ Sample Identification = collection date (year.month.day) soil boring location (SB) depth (feet below ground surface)

² The United States Environmental Protection Agency (USEPA) Regional Screening Level (RSL) Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for industrial soil was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

³ The most conservative Louisiana Department of Environmental Quality (LDEQ) Risk Evaluation/Corrective Action Program (RECAP) Screening Standard (dated October 2003) of the soil for industrial use (SSi) and the soil concentration protective of groundwater (SSGW) was determined as the Screening Level for surface soil. The soil concentration protective of groundwater (SSGW) RECAP Screening Standard (RSS) was determined as the Screening Level for subsurface soil. The RECAP document (October 2003) defines surface soil as the interval present from the ground surface to the depth of impact. Data from the baseline sample event will establish site closeout and site restoration.

Table 4 Area I Perimeter Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 1 of 4

						Sample Id ¹	2015.08.18 SB-4 (0-2)	2015.08.18 SB-4 (16-18)	2015.08.18 SB-4 (28-30)	2015.08.18 SB-5 (0-2)	2015.08.18 SB-5 (16-18)	2015.08.18 SB-5 (28-30)	2015.08.18 SB DUP#2 SB-5 (28-30)	2015. SB-6		2015.08.18 SB-6 (20-22)	2015.08.18 SB-6 (28-30)	Analytical Method
Analyte						Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result	Oual	Result Qual	Result Qual	
Nitroaromatics and Nitramines																Anna Cana	Trees Quan	
D 16 I				Screen	ning Level ²													
Regional Screening Level. Summary Table ²	Residential Soil	Indust	rial Soil	Surface Soil (0-15 ft bgs)	Sub-Surface Soil (>15 ft bgs)													
1,3,5-Trinitrobenzene	220,000	3,20	0,000	3,200,000	3,200,000	ug/kg	<25	<27	<27	<27	<27	<25	<26	<27		<25	<26	8330B
1,3-Dinitrobenzene	630	8,	200	8,200	8,200	ug/kg	<39	<43	<43	<43	<43	<40	<41	<43		<40	<42	8330B
2,4,6-Trinitrotoluene	3,600	51	,000	51,000	51,000	ug/kg	<32	<35	<35	<36	<35	<33	<34	<36		<33	<34	8330B
2,4-Dinitrotoluene	1,700	7,	400	7,400	7,400	ug/kg	<34	<37	<37	<38	<37	<35	<35	<38		<35	<36	8330B
2,6-Dinitrotoluene	360	1,	500	1,500	1,500	ug/kg	<57	<63	<63	<64	<63	<59	<60	<64		<59	<61	8330B
2-Amino-4,6-dinitrotoluene	15,000	230	0,000	230,000	230,000	ug/kg	<39	<43	<42	<43	<42	<40	<40	<43		<40	<41	8330B
4-Amino-2,6-dinitrotoluene	15,000	230	0,000	230,000	230,000	ug/kg	<84	<93	<92	<93	<92	<86	<88	<93		<86	<90	8330B
3-Nitrotoluene	630	8,	200	8,200	8,200	ug/kg	<50	<55	<55	<56	<55	<51	<52	<56		<51	<53	8330B
Nitrobenzene	5,100	22	,000	22,000	22,000	ug/kg	<39	<43	<43	<43	<43	<40	<41	<43		<40	<42	8330B
Nitroglycerin	630	8,	200	8,200	8,200	ug/kg	<240	<270	<270	<270	<270	<250	<250	<270		<250	<260	8330B
2-Nitrotoluene	3,200	15	,000	15,000	15,000	ug/kg	<59	<65	<64	<65	<64	<60	<61	<65		<60	<63	8330B
4-Nitrotoluene	25,000	140	0,000	140,000	140,000	ug/kg	<73	<81	<80	<81	<80	<75	<77	<81		<75	<78	8330B
Pentaerythritol Tetranitrate	13,000	160	0,000	160,000	160,000	ug/kg	<310	<340	<340	<340	<340	<320	<320	<340		<320	<330	8330B
RDX	6,100	28	,000	28,000	28,000	ug/kg	<56	<62	<61	<62	<62	<58	<59	<62		<57	<60	8330B
HMX	390,000	5,70	0,000	5,700,000	5,700,000	ug/kg	<35	<39	<38	<39	<38	<36	<37	<39		<36	<37	8330B
Tetryl	16,000	230	0,000	230,000	230,000	ug/kg	<41	<46	<45	<46	<45	<43	<43	<46	F1	<42	<44	8330B
Volatile Organic Compounds																	- 10	00000
			1	Screen	ning Level ³	1												
RECAP Screening Standards ³	SSni	SSi	SSGW	Surface Soil (0-15 ft bgs)	Sub-Surface Soil (>15 ft bgs)													
1,1,1,2-Tetrachloroethane	2,700	5,900	46	46	46	ug/kg	< 0.43	<0.46	<0.40	<0.36	<0.40	<0.40	< 0.47	<0.32		< 0.39	<0.37	8260C
1,1,1-Trichloroethane	82,000	700,000	4,000	4,000	4,000	ug/kg	< 0.52	<0.57	<0.50	<0.44	<0.49	<0.49	<0.58	< 0.40		<0.48	<0.46	8260C
1,1,2,2-Tetrachloroethane	810	2,000	6	6	6	ug/kg	< 0.49	<0.53	<0.46	<0.41	<0.46	<0.45	<0.54	< 0.37		<0.44	<0.43	8260C
1,1,2-Trichloroethane	1,900	4,300	58	58	58	ug/kg	< 0.69	<0.75	<0.66	<0.58	< 0.65	<0.64	<0.77	<0.53		<0.63	<0.61	8260C
1,1-Dichloroethane	66,000	470,000	7,500	7,500	7,500	ug/kg	< 0.47	<0.51	<0.45	<0.40	<0.44	<0.44	< 0.53	< 0.36		<0.43	<0.42	8260C
1,1-Dichloroethene	13,000	91,000	85	85	85	ug/kg	<2.0	<2.1	<1.9	<1.6	<1.8	<1.8	<2.2	<1.5		<1.8	<1.7	8260C
1,2-Dibromo-3-chloropropane	180	1,600	10	10	10	ug/kg	<1.8	<1.9	<1.7	<1.5	<1.7	<1.6	<2.0	<1.3		<1.6	<1.5	8260C
1,2-Dichloroethane	820	1,800	35	35	35	ug/kg	<1.1	<1.1	<1.0	<0.88	<0.99	<0.98	<1.2	<0.81		<0.97	<0.93	8260C
1,2-Dichloropropane	690	1,800	42	42	42	ug/kg	<0.46	<0.50	<0.44	<0.39	<0.43	<0.43	<0.51	<0.35		<0.42	<0.40	8260C
	3,100	10,000	40	40	40	ug/kg	<1.2	<1.3	<1.1	<0.96	<1.1	<1.1	<1.3	<0.88		<1.1	<1.0	8260C
1,3-Dichloropropene, Total	590,000	4,400,000	5,000	5,000	5,000	ug/kg	<2.3	<2.5	<2.2	<1.9	<2.2	<2.2	<2.6	<1.8		<2.1	<2.0	8260C
	370,000	2 100 000	6.400	6,400	6,400	ug/kg	<0.89	<0.96	<0.84	<0.74	<0.83	<0.82	<0.98	< 0.68		<0.81	<0.78	8260C
2-Butanone (methyl ethyl ketone)	450,000	3,100,000	6,400		A contract of the contract of				<7.5	21	<7.4	<7.3	<8.7		J,F1,F2			8260C
2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone)		1,400,000	1,500	1,500	1,500	ug/kg	11 J	<8.5	1.3	41						./</td <td><6.9</td> <td></td>	<6.9	
2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone	450,000			_	1,500 51	ug/kg ug/kg	<0.30	<0.33							3,1 1,1 2	<7.2	<6.9 <0.27	
2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene	450,000 170,000	1,400,000	1,500	1,500		ug/kg	<0.30	<0.33	<0.29	<0.25	<0.28	<0.28	<0.34	<0.23	7,1 1,1 2	<0.28	<0.27	8260C
2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane	450,000 170,000 1,500	1,400,000 3,100	1,500 51	1,500 51	51 920	ug/kg ug/kg	<0.30 <0.30	<0.33 <0.33	<0.29 <0.29	<0.25 <0.25	<0.28 <0.28	<0.28 <0.28	<0.34 <0.34	<0.23 <0.23	3,1 1,1 2	<0.28 <0.28	<0.27 <0.27	8260C 8260C
1,3-Dichloropropene, Total 2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform Bromomethane	450,000 170,000 1,500 1,800	1,400,000 3,100 4,200	1,500 51 920	1,500 51 920	51	ug/kg ug/kg ug/kg	<0.30 <0.30 <0.45	<0.33 <0.33 <0.49	<0.29 <0.29 <0.43	<0.25 <0.25 <0.38	<0.28 <0.28 <0.42	<0.28 <0.28 <0.42	<0.34 <0.34 <0.50	<0.23 <0.23 <0.34	3,11,12	<0.28 <0.28 <0.41	<0.27 <0.27 <0.39	8260C 8260C 8260C
2-Butanone (methyl ethyl ketone) 4-Methyl-2-pentanone (methyl isobutyl ketone) Acetone Benzene Bromodichloromethane Bromoform	450,000 170,000 1,500 1,800 48,000	1,400,000 3,100 4,200 180,000	1,500 51 920 1,800	1,500 51 920 1,800	51 920 1,800	ug/kg ug/kg	<0.30 <0.30	<0.33 <0.33	<0.29 <0.29	<0.25 <0.25	<0.28 <0.28	<0.28 <0.28	<0.34 <0.34	<0.23 <0.23	3,11,12	<0.28 <0.28	<0.27 <0.27	8260C 8260C

Table 4
Area I Perimeter Soil Data Summary
Baseline Sample Event
M6 Destruction Project
Camp Minden National Guard Training Site
Minden, Louisiana
Page 2 of 4

						Sample Id ¹	2015.08.18 SB-4 (0-2)	2015.08.18 SB-4 (16-18)	2015.08.18 SB-4 (28-30)	2015.08.18 SB-5 (0-2)	2015.08.18 SB-5 (16-18)	2015.08.18 SB-5 (28-30)	2015.08.18 SB DUP#2 SB-5 (28-30)	2015.08.18 SB-6 (0-2)	2015.08.18 SB-6 (20-22)	2015.08.18 SB-6 (28-30)	Analytical Method
Analyte						Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	
Chlorobenzene	17,000	120,000	3,000	3,000	3,000	ug/kg	<0.46	<0.50	<0.44	<0.39	<0.43	<0.43	<0.51	<0.35	<0.42	<0.40	8260C
Dibromochloromethane (chlorodibromomethane)	2,200	5,400	1,000	1,000	1,000	ug/kg	<0.50	<0.54	<0.47	<0.42	<0.47	<0.46	<0.55	<0.38	<0.42	<0.44	8260C
Chloroethane	4,100	8,200	35	35	35	ug/kg	<0.63	<0.68	<0.60	<0.53	<0.59	<0.59	<0.70	<0.48 F1	<0.58	<0.55	8260C
Chloroform	44	300	900	300	900	ug/kg	<0.46	<0.50	<0.44	<0.39	<0.43	<0.43	<0.51	<0.35	<0.42	<0.40	8260C
Chloromethane	3,500	7,300	100	100	100	ug/kg	<0.79	<0.86	<0.75	<0.66	<0.74	<0.73	<0.88	<0.60	<0.72	<0.40	
cis-1,2-Dichloroethene	4,800	34,000	490	490	490	ug/kg	<0.73	<0.79	<0.69	<0.61	<0.68	<0.68	<0.81	<0.56	<0.72		8260C
Ethyl benzene	160,000	230,000	19,000	19,000	19,000	ug/kg	<0.36	<0.40	<0.35	<0.30	<0.34	<0.34	<0.40	<0.28	<0.67	<0.64	8260C
Hexachlorobutadiene	820	8,600	5,500	5,500	5,500	ug/kg	<0.83	<0.90	<0.78	<0.69	<0.78	<0.77	<0.40			<0.32	8260C
Isobutylalcohol	730,000	6,200,000	30,000	30,000	30,000	ug/kg	<31	<33	<29	<26	<29	<29		<0.63	<0.76	<0.72	8260C
Methyl tert-butyl ether (MTBE)	650,000	4,700,000	77	77	77	ug/kg	<0.58	<0.63	<0.55	<0.49	<0.55		<34	<24	<28	<27	8260C
Methylene Chloride	19,000	44,000	17	17	17	ug/kg	<1.9	<2.1	<1.8	<1.6		<0.54	<0.65	<0.45	<0.53	<0.51	8260C
Styrene	500,000	1,700,000	11,000	11,000	11,000	ug/kg ug/kg	<0.43	<0.46			<1.8	<1.8	<2.1	<1.5	<1.8	<1.7	8260C
Tetrachloroethene (tetrachloroethylene)	8,300	35,000	180	180	180	ug/kg ug/kg	<0.43	<0.40	<0.40 <0.37	<0.36	<0.40	<0.40	<0.47	<0.32	<0.39	<0.37	8260C
Toluene	68,000	470,000	20,000	20,000	20,000		<0.85	<0.42		<0.32	<0.36	<0.36	<0.43	<0.30	<0.36	<0.34	8260C
trans-1,2-Dichloroethene	6,900	48,000	770	770	770	ug/kg			<0.81	<0.71	<0.80	<0.79	<0.94	<0.65	<0.78	<0.75	8260C
Trichloroethene	100	210	73	73	73	ug/kg	<1.1	<1.2	<1.1	<0.95	<1.1	<1.1	<1.3	<0.87	<1.0	<1.0	8260C
Trichlorofluoromethane	38,000	260,000	37,000			ug/kg	<0.47	<0.51	<0.45	<0.40	<0.44	<0.44	<0.53	<0.36	<0.43	<0.42	8260C
Vinyl Chloride	240	790		37,000	37,000	ug/kg	<0.61	<0.66	<0.58	<0.51	<0.57	<0.56	< 0.67	<0.46	<0.56	<0.53	8260C
Xylenes (total)	18,000	120,000	13	13	13	ug/kg	<0.52	<0.57	<0.50	<0.44	<0.49	<0.49	<0.58	<0.40	<0.48	<0.46	8260C
Semivolatile Organic Compounds	10,000	120,000	150,000	120,000	150,000	ug/kg	<1.0	<1.1	<0.98	<0.86	<0.97	<0.96	<1.1	<0.79	<0.94	<0.91	8260C
•	1			Corner	sing Laval ³	1											
	SSni	SSi	SSGW		ning Level ³												
RECAP Screening Standards ³	SSní	SSi	SSGW	Surface Soil	Sub-Surface Soil												
	SSni 230,000			Surface Soil (0-15 ft bgs)	Sub-Surface Soil (>15 ft bgs)	ue/ke	<39	<43	<41	<36	<41	- A3	- 44	25	<40	212	92700
RECAP Screening Standards ³	230,000	230,000	190,000	Surface Soil (0-15 ft bgs) 190,000	Sub-Surface Soil (>15 ft bgs) 190,000	ug/kg	<39	<43 <43	<41	<36	<41	<43	<44	<35	<40	<42	8270D
RECAP Screening Standards ³	230,000 1,200	230,000 12,000	190,000 6,900	Surface Soil (0-15 ft bgs) 190,000 6,900	Sub-Surface Soil (>15 ft bgs) 190,000 6,900	ug/kg	<39	<43	<41	<36	<41	<43	<44	<35	<40	<42	8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene	230,000 1,200 66,000	230,000 12,000 1,200,000	190,000 6,900 14,000	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000	ug/kg ug/kg	<39 <39	<43 <43	<41 <41	<36 <36	<41 <41	<43 <43	<44 <44	<35 <35	<40 <40	<42 <42	8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	230,000 1,200 66,000 99,000	230,000 12,000 1,200,000 380,000	190,000 6,900 14,000 29,000	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000	ug/kg ug/kg ug/kg	<39 <39 <39	<43 <43 <43	<41 <41 <41	<36 <36 <36	<41 <41 <41	<43 <43 <43	<44 <44 <44	<35 <35 <35	<40 <40 <40	<42 <42 <42	8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	230,000 1,200 66,000 99,000 2,100	230,000 12,000 1,200,000 380,000 18,000	190,000 6,900 14,000 29,000 2,100	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100	ug/kg ug/kg ug/kg ug/kg	<39 <39 <39 <39	<43 <43 <43 <43	<41 <41 <41 <41	<36 <36 <36 <36	<41 <41 <41 <41	<43 <43 <43 <43	<44 <44 <44 <44	<35 <35 <35 <35	<40 <40 <40 <40	<42 <42 <42 <42	8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	230,000 1,200 66,000 99,000 2,100 450	230,000 12,000 1,200,000 380,000 18,000 5,000	190,000 6,900 14,000 29,000 2,100 250	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250	ug/kg ug/kg ug/kg ug/kg ug/kg	<39 <39 <39 <39 <39	<43 <43 <43 <43 <43	<41 <41 <41 <41 <41	<36 <36 <36 <36 <36	<41 <41 <41 <41 <41	<43 <43 <43 <43 <43	<44 <44 <44 <44 <44	<35 <35 <35 <35 <35	<40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene	230,000 1,200 66,000 99,000 2,100 450 6,700	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000	190,000 6,900 14,000 29,000 2,100 250 5,700	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	<39 <39 <39 <39 <39 <39 <39	<43 <43 <43 <43 <43 <43	<41 <41 <41 <41 <41 <41	<36 <36 <36 <36 <36 <36 <36	<41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44	<35 <35 <35 <35 <35 <35 <35	<40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	39 39 39 39 39 39 39 39 39	<43 <43 <43 <43 <43 <43 <43 <43	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<36 <36 <36 <36 <36 <36 <36 <36	<41	<43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44	<35 <35 <35 <35 <35 <35 <35 <35 <35 <35	<40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	39 39 39 39 39 39 39 39 39 39 39	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44	<35 <35 <35 <35 <35 <35 <35 <35 <35 <35	<40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300	ug/kg	39 39 39 39 39 39 39 39 39 39 39 39 39	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,0-Dichlorophenol	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000	ug/kg	39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<36 <36 <36 <36 <36 <36 <36 <36 <36 <36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	35 35 35 35 35 35 35 35 35 35 35 35 35 35 35	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000	ug/kg	39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700	ug/kg	39 39<	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 340	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000 98,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000	ug/kg	39 39<	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	<35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <36 <37 <37 <37 <38 <37 <37 <38 <38 <39 <39 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900 4,300	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000 98,000 46,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390	ug/kg	39 39	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	35 35 35 35 35 35 35 35 35 35 35 35 340 *F2 35 35	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900 4,300 500,000	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000 98,000 46,000 8,300,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000	ug/kg	39 39	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	35 35	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrobenzene 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900 4,300 500,000 15,000	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000 98,000 46,000 8,300,000 140,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400	ug/kg	39 39	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41	36 36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	35 35	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900 4,300 500,000 15,000 22,000	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000 98,000 46,000 8,300,000 140,000 170,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400 1,700	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400 1,700	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,700 1,700 1,700	ug/kg	39 39	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41	36 36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	35 35	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Nitroaniline	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900 4,300 500,000 15,000 22,000 1,700	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000 98,000 46,000 8,300,000 140,000 170,000 170,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400 1,700 1,700 1,700 1,700 1,700	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,700 1,700 1,700 1,700 1,700 1,700 1,700	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,700 1,700 1,700 1,700 1,700 1,700	ug/kg	39 39	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41	36 36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	35 35	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D
RECAP Screening Standards ³ 1,1 Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene	230,000 1,200 66,000 99,000 2,100 450 6,700 140,000 530,000 40,000 16,000 93,000 7,100 8,900 4,300 500,000 15,000 22,000	230,000 12,000 1,200,000 380,000 18,000 5,000 16,000 1,400,000 6,600,000 170,000 200,000 1,100,000 69,000 98,000 46,000 8,300,000 140,000 170,000	190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400 1,700	Surface Soil (0-15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,400 1,700	Sub-Surface Soil (>15 ft bgs) 190,000 6,900 14,000 29,000 2,100 250 5,700 31,000 320,000 1,300 12,000 20,000 1,700 1,000 390 500,000 1,700 1,700 1,700	ug/kg	39 39	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<41	36 36	<41 <41 <41 <41 <41 <41 <41 <41 <41 <41	<43 <43 <43 <43 <43 <43 <43 <43 <43 <43	<44 <44 <44 <44 <44 <44 <44 <44 <44 <44	35 35	<40 <40 <40 <40 <40 <40 <40 <40 <40 <40	<42 <42 <42 <42 <42 <42 <42 <42 <42 <42	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D

Table 4 Area I Perimeter Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 3 of 4

						Sample Id ¹	2015.08.18 SB-4 (0-2)	2015.08.18 SB-4 (16-18)	2015.08 SB-4 (28		2015.08.18 SB-5 (0-2)	2015.08.18 SB-5 (16-18)	2015.08.18 SB-5 (28-30)	2015.08.18 SB DUP#2 SB-5 (28-30)	2015.08.18 SB-6 (0-2)	2015.08.18 SB-6 (20-22)	2015.08.18 SB-6 (28-30)	Analytical Method
Analyte						Units	Result Qual	Result Qual	Result (Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qua	Result Qual	Result Qual	
4-Nitroaniline	10,000	100,000	1,700	1,700	1,700	ug/kg	<390	<430	<410		<360	<410	<430	<440	<340	<390	<420	8270D
4-Nitrophenol	32,000	330,000	2,600	2,600	2,600	ug/kg	<390	<430	<410		<360	<410	<430	<440	<340	<390	<420	8270D
Acenaphthene	370,000	6,100,000	220,000	220,000	220,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Acenaphthylene	350,000	5,100,000	88,000	88,000	88,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Aniline	2,400	17,000	65	65	65	ug/kg	<70	<78	<74		<65	<74	<78	<80	<63	<71	<76	8270D
Anthracene	2,200,000	48,000,000	120,000	120,000	120,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Benz(a)anthracene	620	2,900	330,000	2,900	330,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Benzo(a)pyrene	330	330	23,000	330	23,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Benzo(b)fluoranthene	620	2,900	220,000	2,900	220,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Benzo(k)fluoranthene	6,200	29,000	120,000	29,000	120,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D 8270D
Bis(2-chlorisopropyl)ether	4,900	17,000	800	800	800	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D 8270D
Bis(2-chloroethyl)ether	330	1,100	330	330	330	ug/kg	<39	<44	<41		<36	<41	<44	<45	<35	<40	<42	8270D 8270D
Bis(2-ethylhexyl)phthalate	35,000	170,000	79,000	79,000	79,000	ug/kg	<53	<59	<56		<49	<56	<59	<60	<47	<54	<57	8270D 8270D
Butyl benzyl phthalate	220,000	220,000	220,000	220,000	220,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D 8270D
Chrysene	62,000	290,000	76,000	76,000	76,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D 8270D
Dibenz(a,h)anthracene	330	330	540,000	330	540,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	
Dibenzofuran	29,000	150,000	24,000	24,000	24,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40		8270D
Diethyl phthalate	670,000	670,000	360,000	360,000	360,000	ug/kg	<39	<43	<41	\dashv	<36	<41	<43	<44	<35	<40	<42	8270D
Dimethyl phthalate	1,500,000	1,500,000	1,500,000	1,500,000	1,500,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35		<42	8270D
Di-n-octyl phthalate	240,000	3,500,000	10,000,000	3,500,000	10,000,000	ug/kg	<39	<43	<41		<36	<41	<43	<44		<40	<42	8270D
Fluoranthene	220,000	2,900,000	1,200,000	1,200,000	1,200,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Fluorene	280,000	5,400,000	230,000	230,000	230,000	ug/kg	<39	<43	<41		<36	<41	<43		<35	<40	<42	8270D
Hexachlorobenzene	340	2,000	9,600	2,000	9,600	ug/kg ug/kg	<39	<43	<41		<36	<41		<44	<35	<40	<42	8270D
Hexachlorobutadiene	820	8,600	5,500	5,500	5,500	ug/kg ug/kg	<39	<43	<41				<43	<44	<35	<40	<42	8270D
Hexachlorocyclopentadiene	1,400	9,400	1,200,000	9,400	1,200,000	ug/kg ug/kg	<390	<430	<410		<36 <360	<41	<43	<44	<35	<40	<42	8270D
Hexachloroethane	5,200	68,000	2,200	2,200	2,200	ug/kg ug/kg	<39	<430				<410	<430	<440	<340	<390	<420	8270D
ndeno(1,2,3-cd)pyrene	620	2,900	9,200	2,900	9,200				<41		<36	<41	<43	<44	<35	<40	<42	8270D
sophorone	340,000	1,100,000	560	560	560	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Naphthalene	6,200	43,000	1,500	1,500	1,500	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Vitrobenzene	2,200	25,000	330	330		ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
N-Nitrosodi-n-propylamine	330			-	330	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Pentachlorophenol	2,800	330	330	330	330	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Phenanthrene	2,800	9,700	1,700	1,700	1,700	ug/kg	<390	<430	<410		<360	<410	<430	<440	<340	<390	<420	8270D
Phenol		43,000,000	660,000	660,000	660,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
	1,300,000	15,000,000	11,000	11,000	11,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
Pyrene N-Nitrosodiphenylamine	230,000	5,600,000	1,100,000	1,100,000	1,100,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	<42	8270D
	90,000	400,000	2,100	2,100	2,100	ug/kg	<39	<43	<41		<36	<41	<43.	<44	<35	<40	<42	8270D
Regional Screening Level Summary Table ²	Residential Soil	Industi	rial Soil	Screen Surface Soil (0-15 ft bgs)	ing Level ² Sub-Surface Soil (>15 ft bgs)													
Di-n-butyl phthalate	630,000	8,200	0,000	8,200,000	8,200,000	ug/kg	<39	<43	<41		<36	<41	<43	<44	<35	<40	-42	92700
Diphenylamine	160,000	2,100		2,100,000	2,100,000	ug/kg	<39	<43	<41	-+	<36	<41	<43	<44	<35	<40	<42 <42	8270D 8270D

Table 4 **Area I Perimeter Soil Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site** Minden, Louisiana Page 4 of 4

	Sample Id ¹		2015.08.18 SB-4 (16-18)					2015.08.18 SB DUP#2 SB-5 (28-30)	2015.08.18 SB-6 (0-2)		2015.08.18 SB-6 (28-30)	Analytical Method
.nalyte	Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	100000

Concentrations in bold indicate the MDL exceeds the Screening Level.

Abbreviations:

<= Not detected at the reporting limit (or MDL or EDL if shown)

Qual = Qualifer

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

F2= MS/MSD RPD exceeds control limits

F1= MS and/or MSD Recovery is outside acceptance limits

*=LCS or LCSD is outside acceptance limits

ug/kg = micrograms per killograms

RECAP = Risk Evaluation/Corrective Action Program

SSni = Soil Screening non-industrial

SSi = Soil Screening industrial

SSGW = Soil Screening protective of groundwater

¹ Sample Identification = collection date (year.month.day) soil boring location (SB) depth (feet below ground surface)

² The United States Environmental Protection Agency (USEPA) Regional Screening Level (RSL) Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for industrial soil was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

³ The most conservative Louisiana Department of Environmental Quality (LDEQ) Risk Evaluation/Corrective Action Program (RECAP) Screening Standard (dated October 2003) of the soil for industrial use (SSi) and the soil concentration protective of groundwater (SSGW) was determined as the Screening Level for surface soil. The soil concentration protective of groundwater (SSGW) RECAP Screening Standard (RSS) was determined as the Screening Level for subsurface soil. The RECAP document (October 2003) defines surface soil as the interval present from the ground surface to a depth of 15 feet below ground surface, and subsurface soil as the interval present from 15 feet below ground surface to the depth of impact. Data from the baseline sample event will establish site closeout and site restoration.

TABLE 5 GROUNDWATER MONITORING WELL CHARACTERISTICS

DATE: 151022 Site Name: Camp Minden M6 Destruction

Monitoring Well Characteristics

monitoring frem characteristics				
SITE MONITORING WELL NO.	MW-1	MW-2	MW-3	MW-4
PERMIT NUMBER/AUTHORIZATION	WWC-574	WWC-574	WWC-574	WWC-574
ротр і.р.	11591Z	11592Z	11593Z	11594Z
LATITUDE	32° 33' 15.53"	32° 33' 17.97"	32° 33' 12.22"	32° 33' 15.53"
LONGITUDE	93° 27' 50.88"	93° 27' 52.77"	93° 27' 50.89"	93° 27' 54.88"
LAT/LONG METHOD	SGB	SdĐ	GPS	GPS
UNIT/AREA MONITORED	Camp Minden - Area I	Camp Minden - Area I	Camp Minden - Area I	Camp Minden - Area I
WELL LOCATION	East side of Camp Minden Area I	North side of Camp Minden Area I	East side of Camp Minden Area I	West side of Camp Minden Area I
WELL TYPE	Monitoring	Monitoring	Monitoring	Monitoring
WELL STATUS	Active	Active	Active	Active
GRADIENT	Up Gradient	Up Gradient	Up Gradient	Up Gradient
CASING DIAMETER (INCHES)	2	2	2	2
CASING MATERIAL	PVC	PVC	PVC	PVC
DATE COMPLETED (yy,mm,dd)	150818	150818	150818	150819
ZONE MONITORED	Upper Water Bearing Zone	Upper Water Bearing Zone	Upper Water Bearing Zone	Upper Water Bearing Zone
ZONE THICKNESS (FEET)	4	4	4	4
ELEV. OF MEASURING POINT (NGVD)	205.16	206.07	204.14	203.66
WELL DEPTH AT INSTALLATION (NGVD)	30	30	30	29
GROUND SURFACE ELEVATION (NGVD)	202.08	203.18	201.72	199.75
TOP OF SCREENED INTERVAL (NGVD)	182.08	183.18	181.72	180.75
BOTTOM OF SCREENED INTERVAL (NGVD)	172.08	173.18	171.72	170.75
SUMP LENGTH (FEET)	0.50	0.50	0.50	0.50

TABLE 5 GROUND WATER MONITORING WELL CHARACTERISTICS

DATE: 151022 Site Name: Camp Minden M6 Destruction

Monitoring Well Characteristics

PITE MONITORING WELL NO. MW-5 MW-5 MW-6 Perentit Number Perentit Number Perentit Number Perentit Number MW-5.74 MW-6.74 MW-6.574 MW-6.74 MW-6.74 MW-6.74 MW-6.74 MW-6.74 MW-6.74 MW-6.74 Perentit Number Perentit Number Number Number Perentit Number Num			
RIZATION WWC-574 11595Z 32° 33° 08.92" 32° 33° 08.92" 93° 27° 52.76" GPS GPS Camp Minden - Area I Camp Minden - Area I South side of Camp Minden Area I Active Monitoring Active ES) 2 m,dd) 150819 M,dd) 150819 Lupper Water Bearing Zone 4 ATION (FEET BGS) 27 ATION (NGVD) 200.78 ATION (NGVD) 200.78 RVAL (NGVD) 183.78 NTERVAL (NGVD) 173.78 NTERVAL (NGVD) 0.50	SITE MONITORING WELL NO.	MW-5	MW-6
11595Z 32° 33' 08.92" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76" 93° 27' 52.76 93° 27' 52.76 93° 27' 53.78 93° 27' 53.78 93° 27' 53.78 93° 27' 53.78 93° 27' 53.78 93° 27' 53.78 93° 27' 53.78 93° 27' 53.78 93° 27' 53.78 93° 27' 53.78 93° 27' 53.78 93° 27' 53.78 93° 27' 53° 27	PERMIT NUMBER/AUTHORIZATION	WWC-574	WWC-574
32° 33' 08.92" 93° 27' 52.76" GPS Camp Minden - Area I Camp Minden - Area I South side of Camp Minden Area I Monitoring Active Down Gradient ES) PyC PyC PyC PyC Upper Water Bearing Zone 4 ATION (FEET BGS) ATION (FEET BGS) ATION (NGVD) 200.78 XVAL (NGVD) 133.78 NTERVAL (NGVD) 0.50	ротр і.р.	11595Z	11596Z
93° 27' 52.76" GPS Camp Minden - Area I Camp Minden - Area I South side of Camp Minden Area I Monitoring Active Down Gradient PVC PVC PVC PVC Down Gradient 2 PVC PVC ATION (FEET BGS) ATION (FEET BGS) ATION (NGVD) ATION (N	LATITUDE	32° 33' 08.92"	32° 33' 12.14"
Camp Minden - Area Camp Minden - Area South side of Camp Minden Area Monitoring	LONGITUDE	93° 27' 52.76"	93° 27' 54.82"
Camp Minden - Area South side of Camp Minden Area Monitoring	LAT/LONG METHOD	GPS	Sd9
South side of Camp Minden Area	UNIT/AREA MONITORED	Camp Minden - Area I	Camp Minden - Area I
Monitoring Active ES) 2 m,dd) PVC m,dd) 150819 PVC 4 NINT (NGVD) 204.08 ATION (FEET BGS) 27 ATION (FEET BGS) 27 ATION (NGVD) 200.78 RVAL (NGVD) 183.78 NTERVAL (NGVD) 173.78 NTERVAL (NGVD) 0.50	WELL LOCATION	South side of Camp Minden Area I	West side of Camp Minden Area I
ES) Down Gradient ES) 2 m,dd) PVC m,dd) 150819 Dupper Water Bearing Zone 4 ATION (FEET BGS) 27 ATION (FEET BGS) 27 ATION (NGVD) 200.78 RVAL (NGVD) 183.78 NTERVAL (NGVD) 173.78 NTERVAL (NGVD) 173.78	WELL TYPE	Monitoring	Monitoring
ES) m,dd) m,dd) m,dd) m,dd) m,dd) Down Gradient PVC PVC PVC 150819 4 4 MIT (NGVD) ATION (FEET BGS) ATION (FEET BGS) ATION (NGVD) ATION (NGVD) RVAL (NGVD) 183.78 NTERVAL (NGVD) 0.50	WELL STATUS	Active	Active
ES) 2 m,dd) PVC m,dd) 150819 Upper Water Bearing Zone 4 INT (NGVD) 204.08 ATION (FEET BGS) 27 ATION (NGVD) 200.78 XVAL (NGVD) 183.78 NTERVAL (NGVD) 173.78 NTERVAL (NGVD) 0.50	GRADIENT	Down Gradient	Up Gradient
m,dd) PVC m,dd) 150819 Upper Water Bearing Zone 4 ATION (RGVD) 204.08 ATION (FEET BGS) 27 ATION (NGVD) 200.78 RVAL (NGVD) 183.78 NTERVAL (NGVD) 173.78 NTERVAL (NGVD) 0.50	CASING DIAMETER (INCHES)	2	2
m,dd) 150819 Upper Water Bearing Zone 4 INT (NGVD) 204.08 ATION (FEET BGS) 27 ATION (NGVD) 200.78 XVAL (NGVD) 183.78 NTERVAL (NGVD) 173.78 O.50	CASING MATERIAL	PVC	PVC
Upper Water Bearing Zone 4 4	DATE COMPLETED (yy,mm,dd)	150819	150819
4 ATION (FEET BGS) 27 ATION (NGVD) 200.78 SVAL (NGVD) 183.78 NTERVAL (NGVD) 173.78 0.50	ZONE MONITORED	Upper Water Bearing Zone	Upper Water Bearing Zone
POINT (NGVD) 204.08 ALLATION (FEET BGS) 27 EVATION (NGVD) 200.78 TERVAL (NGVD) 183.78 ED INTERVAL (NGVD) 173.78 0.50 0.50	ZONE THICKNESS (FEET)	4	4
ALLATION (FEET BGS) 27 EVATION (NGVD) 200.78 TERVAL (NGVD) 183.78 ED INTERVAL (NGVD) 173.78 0.50 0.50	ELEV. OF MEASURING POINT (NGVD)	204.08	202.69
EVATION (NGVD) 200.78 TERVAL (NGVD) 183.78 ED INTERVAL (NGVD) 173.78 0.50 0.50	WELL DEPTH AT INSTALLATION (FEET BGS)	27	28
TERVAL (NGVD) 183.78 ED INTERVAL (NGVD) 173.78 0.50	GROUND SURFACE ELEVATION (NGVD)	200.78	200.51
ED INTERVAL (NGVD) 173.78 0.50	TOP OF SCREENED INTERVAL (NGVD)	183.78	182.51
0.50	BOTTOM OF SCREENED INTERVAL (NGVD)	173.78	172.51
	SUMP LENGTH (FEET)	0.50	0.50

TABLE 6 AREA I GROUNDWATER SAMPLING SUMMARY M6 DESTRUCTION PROJECT CAMP MINDEN NATIONAL GUARD TRAINING SITE MINDEN, LOUISIANA

		Potentiometric Data	
Monitoring/Sample Well Number	TOC Elevation (feet NGVD)	Depth to Water (feet below TOC)	Corrected GW Elev. (feet NGVD)
MW-1			
August 31, 2015	205.16	23.10	182.06
MW-2			
August 31, 2015	206.07	23.85	182.22
MW-3			
August 31, 2015	204.14	22.52	181.62
MW-4			
August 31, 2015	203.66	22.18	181.48
MW-5	***		
August 31, 2015	204.08	22.74	181.34
NATI C			
MW-6	202.60	21.22	101 47
August 31, 2015	202.69	21.22	181.47

Notes:

feet NGVD: National Geodetic Vertical Datum feet below TOC: feet below Top of Casing Elevation

Table 7 Area I Groundwater Monitoring Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 1 of 5

			Sample Id ¹	2015.08.31 MW-1	2015.08.31 MW-2	2015.08.31 MW-3	2015.08.31 MW-4	2015.08.31 MW-5	2015.08.31 MW-6	2015.08.31 GW DUP #1 MW-6	Analytical Method
Analyte			Units	Result Qual							
Nitroaromatics and Nitramines											
Regional Screening Level Summary Table ²	Tapwater	Screening Level ²									
1,3,5-Trinitrobenzene	59	59	ug/L	<0.057	<0.057	<0.057	< 0.057	< 0.057	< 0.057	<0.057	8330B
1,3-Dinitrobenzene	0.2	0.2	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	8330B
2,4,6-Trinitrotoluene	0.98	0.98	ug/L	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	<0.080	8330B
2,4-Dinitrotoluene	0.24	0.24	ug/L	< 0.081	<0.081	< 0.081	<0.081	< 0.081	< 0.081	<0.081	8330B
2,6-Dinitrotoluene	0.048	0.048	ug/L	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	8330B
2-Amino-4,6-dinitrotoluene	3.9	3.9	ug/L	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	8330B
4-Amino-2,6-dinitrotoluene	3.9	3.9	ug/L	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	8330B
3-Nitrotoluene	0.17	0.17	ug/L	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	8330B
Nitrobenzene	0.14	0.14	ug/L	<0.082	<0.082	<0.082	<0.082	<0.082	< 0.082	<0.082	8330B
Nitroglycerin	0.2	0.2	ug/L	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	8330B
2-Nitrotoluene	0.31	0.31	ug/L	<0.095	< 0.095	<0.095	<0.095	<0.095	< 0.095	<0.095	8330B
4-Nitrotoluene	4.2	4.2	ug/L	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	8330B
Pentaerythritol Tetranitrate	3.9	3.9	ug/L	<0.61	<0.61	<0.61	<0.61	<0.61	<0.61	<0.61	8330B
RDX	0.7	0.7	ug/L	< 0.094	< 0.094	<0.094	< 0.094	< 0.094	< 0.094	<0.094	8330B
HMX	100	100	ug/L	<0.11	<0.11	<0.11	<0.11	<0.11	< 0.11	<0.11	8330B
Tetryl	3.9	3.9	ug/L	<0.059	< 0.059	< 0.059	<0.059	<0.059	< 0.059	<0.059	8330B
Volatile Organic Compounds											
RECAP Screening Standards ³	GWSS	Screening Level ³									
Acetone	100	100	ug/L	<6.7	<6.7	<6.7	<6.7	<6.7	<6.7	<6.7	8260C
Benzene	5	5	ug/L	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	8260C
Bromoform	100	100	ug/L	<0.37	<0.37	<0.37	<0.37 *F2	<0.37 *	<0.37 *	<0.37 *	8260C
Bromodichloromethane	100	100	ug/L	<0.25	<0.25	<0.25	<0.25 F2	<0.25	<0.25	<0.25	8260C
Bromomethane	10	10	ug/L	<0.40	<0.40	<0.40	<0.40 F2	<0.40	<0.40	<0.40	8260C
2-Butanone (methyl ethyl ketone)	190	190	ug/L	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	8260C
Carbon disulfide	100	100	ug/L	<0.37	< 0.37	<0.37	<0.37 F1	<0.37	< 0.37	<0.37	8260C
Carbon tetrachloride	5	5	ug/L	<0.36	< 0.36	< 0.36	<0.36 F2, F1	<0.36	< 0.36	<0.36	8260C
Chlorobenzene	100	100	ug/L	<0.38	<0.38	<0.38	<0.38 *	<0.38	<0.38	<0.38 *	8260C
Dibromochloromethane (chlorodibromomethane)	100	100	ug/L	<0.33	<0.33	<0.33	<0.33 *	<0.33	< 0.33	<0.33 *	8260C

Table 7 Area I Groundwater Monitoring Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 2 of 5

			Sample Id ¹	2015.08.31 MW-1	2015.08.31 MW-2	2015.08.31 MW-3	2015.08.31 MW-4	2015.08.31 MW-5	2015.08.31 MW-6	2015.08.31 GW DUP #1 MW-6	Analytical Method
Analyte			Units	Result Qua	Result Qual						
Chloroethane	10	10	ug/L	<0.38	<0.38	<0.38	<0.38 F2	<0.38	<0.38	<0.38	8260C
Chloroform	100	100	ug/L	<0.15	<0.15	<0.15	<0.15 F2, F1	<0.15	<0.15	<0.15	8260C
Chloromethane	10	10	ug/L	< 0.55	< 0.55	<0.55	<0.55 F1	<0.55	<0.55	<0.55	8260C
1,2-Dibromo-3-chloropropane	0.2	0.2	ug/L	<1.2	<1.2	<1.2	<1.2 *F2	<1.2 *	<1.2 *	<1.2 *	8260C
1,1-Dichloroethane	81	81	ug/L	<0.39	<0.39	<0.39	<0.39 F1	<0.39	<0.39	<0.39	8260C
1,2-Dichloroethane	5	5	ug/L	< 0.37	< 0.37	<0.37	<0.37	<0.37	< 0.37	<0.37	8260C
cis-1,2-Dichloroethene	70	70	ug/L	<0.16	<0.16	<0.16	<0.16 F1, F2	<0.16	<0.16	<0.16	8260C
trans-1,2-Dichloroethene	100	100	ug/L	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	8260C
1,1-Dichloroethene	7	7	ug/L	<0.37	< 0.37	<0.37	<0.37 F1	< 0.37	< 0.37	<0.37	8260C
1,2-Dichloropropane	5	5	ug/L	<0.32	<0.32	<0.32	<0.32	<0.32	<0.32	<0.32	8260C
Ethyl benzene	700	700	ug/L	<0.30	<0.30	<0.30	<0.30 *	<0.30	<0.30	<0.30 *	8260C
Hexachlorobutadiene	0.73	0.73	ug/L	<0.25	<0.25	<0.25	<0.25 *	<0.25 *	<0.25 *	<0.25 *	8260C
Isobutylalcohol	1100	1100	ug/L	<7.3	<7.3	<7.3	<7.3	<7.3	<7.3	<7.3	8260C
Methylene Chloride	5	5	ug/L	<1.7	<1.7	<1.7	<1.7 F1	<1.7	<1.7	<1.7	8260C
4-Methyl-2-pentanone (methyl isobutyl ketone)	200	200	ug/L	<0.33	<0.33	<0.33	<0.33 *	<0.33	<0.33	<0.33 *	8260C
Methyl tert-butyl ether (MTBE)	20	20	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	8260C
Trichlorofluoromethane	130	130	ug/L	<0.22	<0.22	<0.22	<0.22 F2	<0.22	<0.22	<0.22	8260C
Trichloroethene	5	5	ug/L	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	8260C
1,1,1-Trichloroethane	200	200	ug/L	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	8260C
Vinyl Chloride	2	2	ug/L	<0.43	<0.43	<0.43	<0.43 F1	<0.43	<0.43	<0.43	8260C
1,1,1,2-Tetrachloroethane	5	5	ug/L	<0.25	<0.25	<0.25	<0.25 *	<0.25	<0.25	<0.25 *	8260C
1,1,2,2-Tetrachloroethane	0.5	0.5	ug/L	<0.43	<0.43	<0.43	<0.43 *F2	<0.43 *	<0.43 *	<0.43 *	8260C
1,1,2-Trichloroethane	5	5	ug/L	< 0.57	<0.57	<0.57	<0.57 *	<0.57	<0.57	<0.57 *	8260C
Styrene	100	100	ug/L	<0.35	<0.35	<0.35	<0.35 *F2,F1	<0.35	<0.35	<0.35 *	8260C
Tetrachloroethene (tetrachloroethylene)	5	5	ug/L	<0.28	<0.28	<0.28	<0.28 *	<0.28	<0.28	<0.28 *	8260C
Toluene	1000	1000	ug/L	<1.0	<1.0	<1.0	<1.0 *	<1.0	<1.0	<1.0 *	8260C
Xylenes (total)	10000	10000	ug/L	<0.85	<0.85	<0.85	<0.85 *F1	<0.85	<0.85	<0.85	8260C
1,3-Dichloropropene, Total	5	5	ug/L	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	8260C
Semivolatile Organic Compounds										,	02000
RECAP Screening Standards ³	GWSS	Screening Level ³									
Acenaphthene	37	37	ug/L	< 0.95	< 0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Acenaphthylene	100	100	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D

Table 7 Area I Groundwater Monitoring Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 3 of 5

			Sample Id ¹	2015.08.31 MW-1	2015.08.31 MW-2	2015.08.31 MW-3	2015.08.31 MW-4	2015.08.31 MW-5	2015.08.31 MW-6	2015.08.31 GW DUP #1 MW-6	Analytical Method
Analyte			Units	Result Qual							
Aniline	12	12	ug/L	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	8270D
Anthracene	43	43	ug/L	<0.95	< 0.95	<0.95	<0.96	< 0.95	< 0.95	<0.95	8270D
Benz(a)anthracene	7.8	7.8	ug/L	<0.95	< 0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Benzo(a)pyrene	0.2	0.2	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Benzo(b)fluoranthene	4.8	4.8	ug/L	<0.95	< 0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Benzo(k)fluoranthene	2.5	2.5	ug/L	<0.95	< 0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
1,1 Biphenyl	30	30	ug/L	< 0.95	<0.95	<0.95	<0.96	< 0.95	<0.95	<0.95	8270D
Bis(2-chloroethyl)ether	5.7	5.7	ug/L	< 0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Bis(2-chlorisopropyl)ether	5.7	5.7	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Bis(2-ethylhexyl)phthalate	6	6	ug/L	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	8270D
Butyl benzyl phthalate	730	730	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
2-Chloronaphthalene	49	49	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
2-Chlorophenol	10	10	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Chrysene	1.6	1.6	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Dibenz(a,h)anthracene	2.5	2.5	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Dibenzofuran	10	10	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
1,2-Dichlorobenzene	600	600	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
1,3-Dichlorobenzene	10	10	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
1,4-Dichlorobenzene	75	75	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
3,3-Dichlorobenzidine	20	20	ug/L	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	8270D
2,4-Dichlorophenol	11	11	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Diethyl phthalate	2900	2900	ug/L	4.1 J	<0.95	<0.95	<0.96	<0.95	1.4 J	<0.95	8270D
2,4-Dimethylphenol	73	73	ug/L	<0.95	< 0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Dimethyl phthalate	37000	37000	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
1,3-Dinitrobenzene	10	10	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
2,4-Dinitrophenol	50	50	ug/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	8270D
2,4-Dinitrotoluene	10	10	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
2,6-Dinitrotoluene	10	10	ug/L	<2.0	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	8270D
Di-n-octyl phthalate	20	20	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Fluoranthene	150	150	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Fluorene	24	24	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Hexachlorobenzene	1	1	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Hexachlorobutadiene	0.73	0.73	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Hexachlorocyclopentadiene	50	50	ug/L	< 0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D

Table 7 Area I Groundwater Monitoring Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 4 of 5

			Sample 2 Id ¹		2015.08.31 MW-2	2015.08.31 MW-3	2015.08.31 MW-4	2015.08.31 MW-5	2015.08.31 MW-6	2015.08.31 GW DUP #1 MW-6	Analytical Method
Analyte			Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	
Hexachloroethane	10	10	ug/L	<0.95	<0.95	<0.95	< 0.96	<0.95	< 0.95	<0.95	8270D
Indeno(1,2,3-cd)pyrene	3.7	3.7	ug/L	<0.95	<0.95	< 0.95	<0.96	<0.95	<0.95	<0.95	8270D
Isophorone	70	70	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	< 0.95	<0.95	8270D
2-Methylnaphthalene	0.62	0.62	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Naphthalene	10	10	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
2-Nitroaniline	50	50	ug/L	<1.0	<1.0	<1.0	<1.1	<1.0	<1.1	<1.0	8270D
3-Nitroaniline	50	50	ug/L	<0.95	<0.95	<0.95	< 0.96	<0.95	< 0.95	<0.95	8270D
4-Nitroaniline	50	50	ug/L	<0.95	<0.95	< 0.95	<0.96	<0.95	<0.95	<0.95	8270D
Nitrobenzene	1.9	1.9	ug/L	<0.95	<0.95	< 0.95	<0.96	<0.95	< 0.95	<0.95	8270D
4-Nitrophenol	50	50	ug/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	8270D
N-Nitrosodi-n-propylamine	10	10	ug/L	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	8270D
N-Nitrosodiphenylamine	14	14	ug/L	<0.95	<0.95	< 0.95	<0.96	<0.95	< 0.95	<0.95	8270D
Pentachlorophenol	1	1	ug/L	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	8270D
Phenanthrene	180	180	ug/L	<0.95	<0.95	< 0.95	< 0.96	<0.95	<0.95	<0.95	8270D
Phenol	180	180	ug/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	8270D
Pyrene	18	18	ug/L	<0.95	<0.95	< 0.95	<0.96	<0.95	< 0.95	<0.95	8270D
1,2,4,5-Tetrachlorobenzene	1.1	1.1	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	< 0.95	<0.95	8270D
2,3,4,6-Tetrachlorophenol	110	110	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
1,2,4-Trichlorobenzene	70	70	ug/L	<0.95	<0.95	<0.95	< 0.96	<0.95	< 0.95	<0.95	8270D
2,4,5-Trichlorophenol	370	370	ug/L	<0.95	<0.95	< 0.95	< 0.96	<0.95	<0.95	<0.95	8270D
2,4,6-Trichlorophenol	10	10	ug/L	<0.95	<0.95	< 0.95	< 0.96	<0.95	< 0.95	<0.95	8270D
Regional Screening Level Summary Table ²	Tapwater	Screening Level ²			•	•		-			
Di-n-butyl phthalate	90	90	ug/L	<0.95	<0.95	<0.95	<0.96	<0.95	<0.95	<0.95	8270D
Diphenylamine	31	31	ug/L	<0.95	<0.95	<0.95	< 0.96	< 0.95	<0.95	<0.95	8270D

Notes:

Concentrations in bold indicate the MDL exceeds the Screening Level.

¹ Sample Identification = collection date (year.month.day) monitoring well location (MW)

² The United States Environmental Protection Agency (USEPA) Regional Screening Level (RSL) Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for tapwater was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

³ The Louisiana Department of Environmental Quality (LDEQ) Risk Evaluation/Corrective Action Program (RECAP) (dated October 2003) Groundwater Screening Standard (GWSS) was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

Table 7 Area I Groundwater Monitoring Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 5 of 5

	Sample Id ¹	2015.08.31 MW-1	2015.08.31 MW-2	2015.08.31 MW-3	2015.08.31 MW-4	2015.08.31 MW-5	2015.08.31 MW-6	2015.08.31 GW DUP #1 MW-6	Analytical Method
Analyte	Units	Result Qual							

Abbreviations:

< = Not detected at the reporting limit (or MDL or EDL if shown)

Qual = Qualifer

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

F2= MS/MSD RPD exceeds control limits

F1= MS and/or MSD Recovery is outside acceptance limits

*=LCS or LCSD is outside acceptance limits

ug/L = micrograms per Liter

RECAP = Risk Evaluation/Corrective Action Program

GWSS = Groundwater Screening Standard

Table 8 Clarkes Bayou Surface Water Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 1 of 2

			Sample Id ¹	2015.08.31 Surfacewater Downstream	2015.08.31 Surfacewate Point of Disch	er Surfacewater	Analytical Method
Analyte			Units	Result Qual	Result C	ual Result Qual	
Volatile Organic Compounds							
RECAP Screening Standards ²	GWSS	Screening Level ²					
Acetone	100	100	ug/L	<6.7	<6.7	<6.7	8260C
Benzene	5	5	ug/L	< 0.25	<0.25	<0.25	8260C
Bromoform	100	100	ug/L	<0.37 *	<0.37 *	<0.37	8260C
Bromodichloromethane	100	100	ug/L	<0.25	<0.25	<0.25	8260C
Bromomethane	10	10	ug/L	<0.40	<0.40	<0.40	8260C
2-Butanone (methyl ethyl ketone)	190	190	ug/L	<0.39	<0.39	<0.39	8260C
Carbon disulfide Carbon tetrachloride	100	100	ug/L	<0.37 <0.36	<0.37	<0.37	8260C
Chlorobenzene	100	100	ug/L ug/L	<0.38	<0.36 <0.38 *	<0.36 <0.38	8260C 8260C
Dibromochloromethane (chlorodibromomethane)	100	100	ug/L ug/L	<0.33	<0.33 *	<0.33	8260C
Chloroethane	10	10	ug/L	<0.38	<0.38	<0.38	8260C
Chloroform	100	100	ug/L	<0.15	<0.15	<0.15	8260C
Chloromethane	10	10	ug/L	<0.55	<0.55	<0.55	8260C
,2-Dibromo-3-chloropropane	0.2	0.2	ug/L	<1.2 *	<1.2 *	<1.2	8260C
1,1-Dichloroethane	81	81	ug/L	<0.39	< 0.39	<0.39	8260C
1,2-Dichloroethane	5	5	ug/L	< 0.37	<0.37	<0.37	8260C
cis-1,2-Dichloroethene	70	70	ug/L	<0.16	<0.16	<0.16	8260C
rans-1,2-Dichloroethene	100	100	ug/L	<0.18	<0.18	< 0.18	8260C
,1-Dichloroethene	7	7	ug/L	< 0.37	<0.37	<0.37	8260C
1,2-Dichloropropane	5	5	ug/L	< 0.32	<0.32	<0.32	8260C
Ethyl benzene	700	700	ug/L	<0.30	<0.30 *	<0.30	8260C
Hexachlorobutadiene	0.73	0,73	ug/L	<0.25 *	<0.25 *	<0.25	8260C
sobutylalcohol	1100	1100	ug/L	<7.3	<7.3	<7.3	8260C
Methylene Chloride	5 200	5	ug/L	<1.7	<1.7	<1.7	8260C
4-Methyl-2-pentanone (methyl isobutyl ketone) Methyl tert-butyl ether (MTBE)	200	200	ug/L ug/L	<0.33	<0.40	<0.33 <0.40	8260C
Frichlorofluoromethane	130	130	ug/L	<0.22	<0.22	<0.22	8260C 8260C
Trichloroethene	5	5	ug/L	<0.29	<0.29	<0.29	8260C
1,1,1-Trichloroethane	200	200	ug/L	<0.29	<0.29	<0.29	8260C
Vinyl Chloride	2	2	ug/L	<0.43	<0.43	<0.43	8260C
1,1,1,2-Tetrachloroethane	5	5	ug/L	<0.25	<0.25 *	<0.25	8260C
1,1,2,2-Tetrachloroethane	0.5	0.5	ug/L	<0.43 *	<0.43 *	<0.43	8260C
1,1,2-Trichloroethane	5	5	ug/L	<0.57	<0.57 *	< 0.57	8260C
Styrene	100	100	ug/L	<0.35	<0.35 *	<0.35	8260C
l'etrachloroethene (tetrachloroethylene)	5	5	ug/L	<0.28	<0.28 *	<0.28	8260C
l'oluene	1000	1000	ug/L	<1.0	<1.0 *	<1.0	8260C
Xylenes (total)	10000	10000	ug/L	<0.85	<0.85	< 0.85	8260C
1,3-Dichloropropene, Total	5	5	ug/L	<0.69	<0.69	<0.69	8260C
Semivolatile Organic Compounds							
RECAP Screening Standards ²	GWSS	Screening					
	7 12 12 1	Level ²					
I,1 Biphenyl	30	30	ug/L	<1.0	<0.96	<0.99	8270D
1,2,4,5-Tetrachlorobenzene	70	70	ug/L	<1.0	<0.96	<0.99	8270D
1,2-Dichlorobenzene	600	600	ug/L ug/L	<1.0 <1.0	<0.96 <0.96	<0.99	8270D 8270D
1,3-Dichlorobenzene	10	10	ug/L ug/L	<1.0	<0.96	<0.99	8270D 8270D
1,3-Dinitrobenzene	10	10	ug/L	<1.0	<0.96	<0.99	8270D
,4-Dichlorobenzene	75	75	ug/L	<1.0	<0.96	<0.99	8270D
2,3,4,6-Tetrachlorophenol	110	110	ug/L	<1.0	<0.96	<0.99	8270D
2,4,5-Trichlorophenol	370	370	ug/L.	<1.0	<0.96	<0.99	8270D
2,4,6-Trichlorophenol	10	10	ug/L	<1.0	<0.96	<0.99	8270D
2,4-Dichlorophenol	11	11	ug/L	<1.0	<0.96	<0.99	8270D
2,4-Dimethylphenol	73	73	ug/L	<1.0	<0.96	<0.99	8270D
2,4-Dinitrophenol	50	50	ug/L	<2.0	<1.9	<2.0	8270D
2,4-Dinitrotoluene	10	10	ug/L	<1.0	<0.96	<0.99	8270D
2,6-Dinitrotoluene	10	10	ug/L	<2.2	<2.1	<2.1	8270D
2-Chloronaphthalene	49	49	ug/L	<1.0	<0.96	< 0.99	8270D

Table 8 Clarkes Bayou Surface Water Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana

Minden, Louisian Page 2 of 2

			Sample Id ¹	2015.08.31 Surfacewater Downstream	2015.08 Surfaces Point of Di	vater	2015.08.31 Surfacewater Upstream		Analytical Method
Analyte			Units	Result Qual	Result	Qual	Result	Qual	
2-Chlorophenol	10	10	ug/L	<1.0	< 0.96		< 0.99		8270D
2-Methylnaphthalene	0.62	0.62	ug/L	<1.0	< 0.96		<0.99		8270D
2-Nitroaniline	50	50	ug/L	<1.1	<1.1		<1.1		8270D
3,3-Dichlorobenzidine	20	20	ug/L	<1.3	<1.2		<1.3		8270D
3-Nitroaniline	50	50	ug/L	<1.0	< 0.96		< 0.99		8270D
4-Nitroaniline	50	50	ug/L	<1.0	< 0.96		< 0.99		8270D
4-Nitrophenol	50	50	ug/L	<2.0	<1.9		<2.0		8270D
Acenaphthene	37	37	ug/L	<1.0	< 0.96		< 0.99		8270D
Acenaphthylene	100	100	ug/L	<1.0	< 0.96		< 0.99		8270D
Aniline	12	12	ug/L	<1.3	<1.2		<1.3		8270D
Anthracene	43	43	ug/L	<1.0	< 0.96		< 0.99		8270D
Benz(a)anthracene	7.8	7.8	ug/L	<1.0	< 0.96		< 0.99		8270D
Benzo(a)pyrene	0.2	0.2	ug/L	<1.0	<0.96		<0.99		8270D
Benzo(b)fluoranthene	4.8	4.8	ug/L	<1.0	< 0.96		<0.99		8270D
Benzo(k)fluoranthene	2.5	2.5	ug/L	<1.0	< 0.96		<0.99		8270D
Bis(2-chlorisopropyl)ether	5.7	5.7	ug/L	<1.0	< 0.96		<0.99		8270D
Bis(2-chloroethyl)ether	5.7	5.7	ug/L	<1.0	< 0.96		< 0.99		8270D
Bis(2-ethylhexyl)phthalate	6	6	ug/L	<1.9	<1.8		<1.8		8270D
Butyl benzyl phthalate	730	730	ug/L	<1.0	< 0.96		< 0.99		8270D
Chrysene	1.6	1.6	ug/L	<1.0	< 0.96		< 0.99		8270D
Dibenz(a,h)anthracene	2.5	2.5	ug/L	<1.0	< 0.96		<0.99		8270D
Dibenzofuran	10	10	ug/L	<1.0	< 0.96		<0.99		8270D
Diethyl phthalate	2900	2900	ug/L	<1.0	< 0.96		<0.99		8270D
Dimethyl phthalate	37000	37000	ug/L	<1.0	< 0.96		<0.99		8270D
Di-n-octyl phthalate	20	20	ug/L	<1.0	<0.96		<0.99		8270D
Fluoranthene	150	150	ug/L	<1.0	<0.96		<0.99		8270D
Fluorene	24	. 24	ug/L	<1.0	< 0.96		< 0.99		8270D
Hexachlorobutadiene	0.73	0.73	ug/L	<1.0	< 0.96		< 0.99		8270D
Hexachlorobenzene	1	1	ug/L	<1.0	< 0.96		<0.99		8270D
Hexachlorocyclopentadiene	50	50	ug/L	<1.0	< 0.96		<0.99		8270D
Hexachloroethane	10	10	ug/L	<1.0	< 0.96		<0.99		8270D
Indeno(1,2,3-cd)pyrene	3.7	3.7	ug/L	<1.0	< 0.96		< 0.99		8270D
Isophorone	70	70	ug/L	<1.0	< 0.96		<0.99		8270D
Naphthalene	10	10	ug/L	<1.0	< 0.96		< 0.99		8270D
Nitrobenzene	1.9	1.9	ug/L	<1.0	< 0.96		<0.99		8270D
N-Nitrosodi-n-propylamine	10	10	ug/L	<1.5	<1.4		<1.5		8270D
N-Nitrosodiphenylamine	14	14	ug/L	<1.0	< 0.96		<0.99	М	8270D
Pentachlorophenol	1	1	ug/L	<1.3	<1.2		<1.3	\Box	8270D
Phenanthrene	180	180	ug/L	<1.0	< 0.96		<0.99		8270D
Phenol	180	180	ug/L	<2.0	<1.9		<2.0		8270D
Pyrene	18	18	ug/L	<1.0	< 0.96		<0.99		8270D
Regional Screening Level	Tr	Screening							
Summary Table ³	Tapwater	Level ³							
Di-n-butyl phthalate	90	90	ug/L	<1.0	< 0.96		<0.99		8270D
Diphenylamine	31	31	ug/L	<1.0	< 0.96		< 0.99		8270D

Notes:

$\label{lem:concentrations} \textbf{Concentrations in bold indicate the MDL exceeds the Screening Level.}$

Abbreviations:

< = Not detected at the reporting limit (or MDL or EDL if shown)

Qual = Qualifer

*=LCS or LCSD is outside acceptance limits

ug/L = micrograms per Liter

RECAP = Risk Evaluation/Corrective Action Program

GWSS = Groundwater Screening Standard

¹ Sample Identification = collection date (year.month.day) surface water collection point

² The Louisiana Department of Environmental Quality (LDEQ) Risk Evaluation/Corrective Action Program (RECAP) (dated October 2003) Groundwater Screening Standard (GWSS) was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

³ The United States Environmental Protection Agency (USEPA) Regional Screening Level (RSL) Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for tapwater was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

Table 9 Clarkes Bayou Sediment Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 1 of 4

				Sample Id ¹	2015.08.31 Sediment Downstream	2015.08.31 Sediment Point of Discharge	2015.08.31 Sediment Dup#2 Point of Discharge	2015.08.31 Sediment Upstream	Analytical Method	
Analyte					Units	Result Qual	Result Qual	Result Qual	Result Qual	
Volatile Organic Compounds										
RECAP Screening Standards ²	SSni	SSi	SSGW	Screening Level ²						
Acetone	170,000	1,400,000	1,500	1,500	ug/kg	<9.5	<17	<17	42	8260C
Benzene	1,500	3,100	51	51	ug/kg	< 0.37	<0.67	<0.64	<0.32	8260C
Bromoform	48,000	180,000	1,800	1,800	ug/kg	<0.54 *	<1.0 *	<0.95 *	<0.47 *	8260C
Bromodichloromethane	1,800	4,200	920	920	ug/kg	< 0.37	<0.67	<0.64	<0.32	8260C
Bromomethane	430	3,000	40	40	ug/kg	<1.6 F1	<3.0	<2.8	<1.4	8260C
2-Butanone (methyl ethyl ketone)	590,000	4,400,000	5,000	5,000	ug/kg	<2.8	<5.2	<4.9	7.2 J	8260C
Carbon disulfide	36,000	250,000	11,000	11,000	ug/kg	<1.0	<1.9	6.9 J	<0.87	8260C
Carbon tetrachloride	180	1,100	110	110	ug/kg	<0.75	<1.4	<1.3	<0.64	8260C
Chlorobenzene	17,000	120,000	3,000	3,000	ug/kg	< 0.56	<1.0	<0.97	<0.48	8260C
Dibromochloromethane (chlorodibromomethane)	2,200	5,400	1,000	1,000	ug/kg	<0.60 F1	<1.1	<1.0	<0.52	8260C
Chloroethane	4,100	8,200	35	35	ug/kg	<0.76 F1	<1.4	<1.3	<0.66	8260C
Chloroform	44	300	900	44	ug/kg	< 0.56	<1.0	<0.97	<0.48	8260C
Chloromethane	3,500	7,300	100	100	ug/kg	<0.95	<1.7	<1.7	<0.82	8260C
1,2-Dibromo-3-chloropropane	180	1,600	10	10	ug/kg	<2.1 *F1	<3.9 *	<3.7 *	<1.8 *	8260C
1,1-Dichloroethane	66,000	470,000	7,500	7,500	ug/kg	< 0.57	<1.0	<1.0	<0.49	8260C
1,2-Dichloroethane	820	1,800	35	35	ug/kg	<1.3	<2.3	<2.2	<1.1	8260C
cis-1,2-Dichloroethene	4,800	34,000	490	490	ug/kg	<0.88	<1.6	<1.5	<0.76	8260C
trans-1,2-Dichloroethene	6,900	48,000	770	770	ug/kg	<1.4	<2.5	<2.4	<1.2	8260C
1,1-Dichloroethene	13,000	91,000	85	85	ug/kg	<2.4	<4.3	<4.1	<2.0	8260C
1,2-Dichloropropane	690	1,800	42	42	ug/kg	< 0.56	<1.0	<0.97	<0.48	8260C
Ethyl benzene	160,000	230,000	19,000	19,000	ug/kg	<0.44	<0.81	<0.77	<0.38	8260C
Hexachlorobutadiene	820	8,600	5,500	820	ug/kg	<1.0 *	<1.8 *	<1.7 *	<0.86 *	8260C
Isobutylalcohol	730,000	6,200,000	30,000	30,000	ug/kg	<37 F1	<68	<65	<32	8260C
Methylene Chloride	19,000	44,000	17	17	ug/kg	<2.3	<4.3	<4.0	<2.0	8260C
4-Methyl-2-pentanone (methyl isobutyl ketone)	450,000	3,100,000	6,400	6,400	ug/kg	<1.1 F1	<2.0	<1.9	<0.92	8260C
Methyl tert-butyl ether (MTBE)	650,000	4,700,000	77	77	ug/kg	<0.71 F1	<1.3	<1.2	<0.60	8260C
Trichlorofluoromethane	38,000	260,000	37,000	37,000	ug/kg	<0.73	<1.3	<1.3	<0.63	8260C

Table 9 Clarkes Bayou Sediment Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 2 of 4

					Sample Id ¹	2015.0 Sedin Downst	nent	Sediment		2015. Sedin Duj Point of I	nent p#2	2015.08.31 Sediment Upstream		Analytical Method
Analyte					Units	Result	Qual	Result	Qual	Result	Qual	Result (Qual	
Trichloroethene	100	210	73	73	ug/kg	< 0.57		<1.0		<1.0		< 0.49		8260C
1,1,1-Trichloroethane	82,000	700,000	4,000	4,000	ug/kg	< 0.63	1	<1.2		<1.1		< 0.54		8260C
Vinyl Chloride	240	790	13	13	ug/kg	< 0.63		<1.2		<1.1		<0.54		8260C
1,1,1,2-Tetrachloroethane	2,700	5,900	46	46	ug/kg	< 0.51		< 0.94		< 0.89		< 0.44		8260C
1,1,2,2-Tetrachloroethane	810	2,000	6	6	ug/kg	< 0.59	*	<1.1	*	<1.0	*	<0.50 *		8260C
1,1,2-Trichloroethane	1,900	4,300	58	58	ug/kg	< 0.84	F1	<1.5		<1.5		< 0.72		8260C
Styrene	500,000	1,700,000	11,000	11,000	ug/kg	< 0.51		< 0.94		< 0.89		< 0.44		8260C
Tetrachloroethene (tetrachloroethylene)	8,300	35,000	180	180	ug/kg	< 0.47		< 0.86	112	< 0.82		<0.40		8260C
Toluene	68,000	470,000	20,000	20,000	ug/kg	<1.0		<1.9		<1.8		<0.88		8260C
Xylenes (total)	18,000	120,000	150,000	18,000	ug/kg	<1.2	1	<2.3		<2.2		<1.1		8260C
1,3-Dichloropropene, Total	3,100	10,000	40	40	ug/kg	<1.4		<2.6		<2.4		<1.2		8260C
RECAP Screening Standards ²	SSni	SSi	SSGW	Screening Level ²										
Acenaphthene	370,000	6,100,000	220,000	220,000	ug/kg	<51		<78		<84		<49		8270D
Acenaphthylene	350,000	5,100,000	88,000	88,000	ug/kg	<51		<78		<84		<49		8270D
Aniline	2,400	17,000	65	65	ug/kg	<92	*	<140	*	<150	*	<89 *		8270D
Anthracene	2,200,000	48,000,000	120,000	120,000	ug/kg	<51		<78		<84		<49		8270D
Benz(a)anthracene	620	2,900	330,000	620	ug/kg	<51		<78		<84		<49		8270D
Benzo(a)pyrene	330	330	23,000	330	ug/kg	<51		<78		<84		<49		8270D
Benzo(b)fluoranthene	620	2,900	220,000	620	ug/kg	<51		<78		<84		<49		8270D
Benzo(k)fluoranthene	6,200	29,000	120,000	6,200	ug/kg	<51		<78		<84		<49		8270D
1,1 Biphenyl	230,000	230,000	190,000	190,000	ug/kg	<51		<78		<84		<49		8270D
Bis(2-chloroethyl)ether	330	1,100	330	330	ug/kg	<52		<78		<84		<49		8270D
Bis(2-chlorisopropyl)ether	4,900	17,000	800	800	ug/kg	<51		<78		<84		<49		8270D
Bis(2-ethylhexyl)phthalate	35,000	170,000	79,000	35,000	ug/kg	<70		<110		<110		<67		8270D
Butyl benzyl phthalate	220,000	220,000	220,000	220,000	ug/kg	<51		<78		<84		<49		8270D
2-Chloronaphthalene	500,000	8,300,000	500,000	500,000	ug/kg	<51		<78		<84		<49		8270D
2-Chlorophenol	15,000	140,000	1,400	1,400	ug/kg	<51		<78		<84		<49		8270D
Chrysene	62,000	290,000	76,000	62,000	ug/kg	<51		<78		<84		<49		8270D

Table 9 Clarkes Bayou Sediment Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 3 of 4

					Sample Id ¹	2015. Sedir Downs	ment		08.31 ment Discharge	2015.0 Sedin Dup Point of D	nent #2	2015.08.31 Sediment Upstream	Analytical Method
Analyte					Units	Result	Qual	Result	Qual	Result	Qual	Result Qual	
Dibenz(a,h)anthracene	330	330	540,000	330	ug/kg	<51		< 78		<84		<49	8270D
Dibenzofuran	29,000	150,000	24,000	24,000	ug/kg	<51		< 78		<84		<49	8270D
1,2-Dichlorobenzene	99,000	380,000	29,000	29,000	ug/kg	<51		< 78		<84		<49	8270D
1,3-Dichlorobenzene	2,100	18,000	2,100	2,100	ug/kg	<51		< 78		<84		<49	8270D
1,4-Dichlorobenzene	6,700	16,000	5,700	5,700	ug/kg	<51		< 78		<84		<49	8270D
3,3-Dichlorobenzidine	970	4,200	1,800	970	ug/kg	<510		<770		<830		<490	8270D
2,4-Dichlorophenol	16,000	200,000	12,000	12,000	ug/kg	<51		< 78		<84		<49	8270D
Diethyl phthalate	670,000	670,000	360,000	360,000	ug/kg	<51		<78		<84		<49	8270D
2,4-Dimethylphenol	93,000	1,100,000	20,000	20,000	ug/kg	<51		< 78		<84		<49	8270D
Dimethyl phthalate	1,500,000	1,500,000	1,500,000	1,500,000	ug/kg	<51		<78		<84		<49	8270D
1,3-Dinitrobenzene	450	5,000	250	250	ug/kg	<51		<78		<84		<49	8270D
2,4-Dinitrophenol	7,100	69,000	1,700	1,700	ug/kg	<510		<770		<830		<490	8270D
2,4-Dinitrotoluene	8,900	98,000	1,000	1,000	ug/kg	<51		<78		<84		<49	8270D
2,6-Dinitrotoluene	4,300	46,000	390	390	ug/kg	<51		<78		<84		<49	8270D
Di-n-octyl phthalate	240,000	3,500,000	10,000,000	240,000	ug/kg	<51		< 78		<84		<49	8270D
Fluoranthene	220,000	2,900,000	1,200,000	220,000	ug/kg	<51		< 78		<84		<49	8270D
Fluorene	280,000	5,400,000	230,000	230,000	ug/kg	<51		< 78		<84		<49	8270D
Hexachlorobenzene	340	2,000	9,600	340	ug/kg	<51		<78		<84	<u> </u>	<49	8270D
Hexachlorobutadiene	820	8,600	5,500	820	ug/kg	<51		< 78		<84		<49	8270D
Hexachlorocyclopentadiene	1,400	9,400	1,200,000	1,400	ug/kg	<510		<770		<830	<u> </u>	<490	8270D
Hexachloroethane	5,200	68,000	2,200	2,200	ug/kg	<51		< 78		<84		<49	8270D
Indeno(1,2,3-cd)pyrene	620	2,900	9,200	620	ug/kg	<51		<78		<84		<49	8270D
Isophorone	340,000	1,100,000	560	560	ug/kg	<51		<78		<84		<49	8270D
2-Methylnaphthalene	22,000	170,000	1,700	1,700	ug/kg	<51		<78		<84		<49	8270D
Naphthalene	6,200	43,000	1,500	1,500	ug/kg	<51		<78		<84		<49	8270D
2-Nitroaniline	1,700	1,700	1,700	1,700	ug/kg	<51		<78		<84		<49	8270D
3-Nitroaniline	13,000	140,000	1,700	1,700	ug/kg	<51		<78		<84		<49	8270D
4-Nitroaniline	10,000	100,000	1,700	1,700	ug/kg	<510		<770		<830		<490	8270D
Nitrobenzene	2,200	25,000	330	330	ug/kg	<51	<u> </u>	<78		<84		<49	8270D
4-Nitrophenol	32,000	330,000	2,600	2,600	ug/kg	<510		<770		<830		<490	8270D
N-Nitrosodi-n-propylamine	330	330	330	330	ug/kg		F1	<78		<84		<49	8270D

Table 9 Clarkes Bayou Sediment Data Summary Baseline Sample Event M6 Destruction Project Camp Minden National Guard Training Site Minden, Louisiana Page 4 of 4

					Sample Id ¹	Downstream		2015.08.31 Sediment Point of Discharge		2015.08.31 Sediment Dup#2 Point of Discharge		2015.08. Sedime Upstrea	t Analytical
Analyte					Units	Result	Qual	Result	Qual	Result	Qual	Result Q	al
N-Nitrosodiphenylamine	90,000	400,000	2,100	2,100	ug/kg	<51	*	< 78	*	<84	*	<49 *	8270D
Pentachlorophenol	2,800	9,700	1,700	1,700	ug/kg	<510		<770		<830		<490	8270D
Phenanthrene	2,100,000	43,000,000	660,000	660,000	ug/kg	<51		<78		<84		<49	8270D
Phenol	1,300,000	15,000,000	11,000	11,000	ug/kg	<51		<78		<84		<49	8270D
Pyrene	230,000	5,600,000	1,100,000	230,000	ug/kg	<51		< 78		<84		<49	8270D
1,2,4,5-Tetrachlorobenzene	1,200	12,000	6,900	1,200	ug/kg	<51		< 78		<84		<49	8270D
2,3,4,6-Tetrachlorophenol	140,000	1,400,000	31,000	31,000	ug/kg	<51		< 78		<84		<49	8270D
1,2,4-Trichlorobenzene	66,000	1,200,000	14,000	14,000	ug/kg	<51		<78		<84		<49	8270D
2,4,5-Trichlorophenol	530,000	6,600,000	320,000	320,000	ug/kg	<51		< 78		<84		<49	8270D
2,4,6-Trichlorophenol	40,000	170,000	1,300	1,300	ug/kg	<51		<78		<84		<49	8270D
Regional Screening Level Summary Table ³	Residential Soil	Indust	rial Soil	Screening Level ³									
Di-n-butyl phthalate	630,000	8,20	0,000	630,000	ug/kg	<51		< 78		<84		<49	8270D
Diphenylamine	160,000	2,10	0,000	160,000	ug/kg	<51	*	<78	*	<84	*	<49 *	8270D

Notes:

Concentrations in bold indicate the MDL exceeds the Screening Level.

Abbreviations:

< = Not detected at the reporting limit (or MDL or EDL if shown)

Qual = Qualifer

F1= MS and/or MSD Recovery is outside acceptance limits

*=LCS or LCSD is outside acceptance limits

ug/kg = micrograms per killograms

RECAP = Risk Evaluation/Corrective Action Program

SSni = Soil Screening non-industrial

SSi = Soil Screening industrial

SSGW = Soil Screening protective of groundwater

¹ Sample Identification = collection date (year.month.day) sediment collection point.

² The most conservative Louisiana Department of Environmental Quallity (LDEQ) Risk Evaluation/Corrective Action Program (RECAP) Screening Standard (dated October 2003) was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

³ The United States Environmental Protection Agency (USEPA) Regional Screening Level (RSL) Summary Table (TR = 1E-06, THQ = 0.1) June 2015 (revised). The USEPA, RSL for residential soil was determined as the Screening Level. Data from the baseline sample event will establish site closeout and site restoration.

SITE LOCATION BOSSIER/WEBSTER PARISH

FIGURE 1

REGIONAL LOCATION MAP

CAMP MINDEN - AREA I DESTRUCTION SITE

PREPARED FOR:

EXPLOSIVE SERVICE INTERNATIONAL

DRAWN LDG CHECKED BY
BY 07/09/15 APPROVED BY

DRAWING NO. BRF/SITE LOC

